Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313333259> ?p ?o ?g. }
- W4313333259 endingPage "102730" @default.
- W4313333259 startingPage "102730" @default.
- W4313333259 abstract "In model-based medical image analysis, three relevant features are the shape of structures of interest, their relative pose, and image intensity profiles representative of some physical properties. Often, these features are modelled separately through statistical models by decomposing the object’s features into a set of basis functions through principal geodesic analysis or principal component analysis. However, analysing articulated objects in an image using independent single object models may lead to large uncertainties and impingement, especially around organ boundaries. Questions that come to mind are the feasibility of building a unique model that combines all three features of interest in the same statistical space, and what advantages can be gained for image analysis. This study presents a statistical modelling method for automatic analysis of shape, pose and intensity features in medical images which we call the Dynamic multi feature-class Gaussian process models (DMFC-GPM). The DMFC-GPM is a Gaussian process (GP)-based model with a shared latent space that encodes linear and non-linear variations. Our method is defined in a continuous domain with a principled way to represent shape, pose and intensity feature-classes in a linear space, based on deformation fields. A deformation field-based metric is adapted in the method for modelling shape and intensity variation as well as for comparing rigid transformations (pose). Moreover, DMFC-GPMs inherit properties intrinsic to GPs including marginalisation and regression. Furthermore, they allow for adding additional pose variability on top of those obtained from the image acquisition process; what we term as permutation modelling. For image analysis tasks using DMFC-GPMs, we adapt Metropolis–Hastings algorithms making the prediction of features fully probabilistic. We validate the method using controlled synthetic data and we perform experiments on bone structures from CT images of the shoulder to illustrate the efficacy of the model for pose and shape prediction. The model performance results suggest that this new modelling paradigm is robust, accurate, accessible, and has potential applications in a multitude of scenarios including the management of musculoskeletal disorders, clinical decision making and image processing." @default.
- W4313333259 created "2023-01-06" @default.
- W4313333259 creator A5003494036 @default.
- W4313333259 creator A5012042510 @default.
- W4313333259 creator A5041290783 @default.
- W4313333259 creator A5049130475 @default.
- W4313333259 creator A5059156831 @default.
- W4313333259 creator A5084728820 @default.
- W4313333259 date "2023-04-01" @default.
- W4313333259 modified "2023-10-16" @default.
- W4313333259 title "Dynamic multi feature-class Gaussian process models" @default.
- W4313333259 cites W1720657599 @default.
- W4313333259 cites W1987030564 @default.
- W4313333259 cites W2009169627 @default.
- W4313333259 cites W2011058684 @default.
- W4313333259 cites W2017797123 @default.
- W4313333259 cites W2032618685 @default.
- W4313333259 cites W2038952578 @default.
- W4313333259 cites W2067553724 @default.
- W4313333259 cites W2075323160 @default.
- W4313333259 cites W2081834074 @default.
- W4313333259 cites W2089344418 @default.
- W4313333259 cites W2095102679 @default.
- W4313333259 cites W2114154169 @default.
- W4313333259 cites W2117661333 @default.
- W4313333259 cites W2122572959 @default.
- W4313333259 cites W2125949583 @default.
- W4313333259 cites W2152826865 @default.
- W4313333259 cites W2170136404 @default.
- W4313333259 cites W2276059348 @default.
- W4313333259 cites W2310705318 @default.
- W4313333259 cites W2314385552 @default.
- W4313333259 cites W2547473593 @default.
- W4313333259 cites W2585959050 @default.
- W4313333259 cites W2754956103 @default.
- W4313333259 cites W2809748434 @default.
- W4313333259 cites W2886960573 @default.
- W4313333259 cites W2896628364 @default.
- W4313333259 cites W2897453080 @default.
- W4313333259 cites W2972770046 @default.
- W4313333259 cites W2980661348 @default.
- W4313333259 cites W3091772648 @default.
- W4313333259 cites W4311273022 @default.
- W4313333259 doi "https://doi.org/10.1016/j.media.2022.102730" @default.
- W4313333259 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36586395" @default.
- W4313333259 hasPublicationYear "2023" @default.
- W4313333259 type Work @default.
- W4313333259 citedByCount "0" @default.
- W4313333259 crossrefType "journal-article" @default.
- W4313333259 hasAuthorship W4313333259A5003494036 @default.
- W4313333259 hasAuthorship W4313333259A5012042510 @default.
- W4313333259 hasAuthorship W4313333259A5041290783 @default.
- W4313333259 hasAuthorship W4313333259A5049130475 @default.
- W4313333259 hasAuthorship W4313333259A5059156831 @default.
- W4313333259 hasAuthorship W4313333259A5084728820 @default.
- W4313333259 hasBestOaLocation W43133332592 @default.
- W4313333259 hasConcept C114289077 @default.
- W4313333259 hasConcept C121332964 @default.
- W4313333259 hasConcept C138885662 @default.
- W4313333259 hasConcept C153180895 @default.
- W4313333259 hasConcept C154945302 @default.
- W4313333259 hasConcept C162324750 @default.
- W4313333259 hasConcept C163716315 @default.
- W4313333259 hasConcept C165818556 @default.
- W4313333259 hasConcept C176217482 @default.
- W4313333259 hasConcept C21547014 @default.
- W4313333259 hasConcept C2524010 @default.
- W4313333259 hasConcept C27438332 @default.
- W4313333259 hasConcept C2776401178 @default.
- W4313333259 hasConcept C31972630 @default.
- W4313333259 hasConcept C33923547 @default.
- W4313333259 hasConcept C41008148 @default.
- W4313333259 hasConcept C41895202 @default.
- W4313333259 hasConcept C61326573 @default.
- W4313333259 hasConcept C62520636 @default.
- W4313333259 hasConcept C83665646 @default.
- W4313333259 hasConceptScore W4313333259C114289077 @default.
- W4313333259 hasConceptScore W4313333259C121332964 @default.
- W4313333259 hasConceptScore W4313333259C138885662 @default.
- W4313333259 hasConceptScore W4313333259C153180895 @default.
- W4313333259 hasConceptScore W4313333259C154945302 @default.
- W4313333259 hasConceptScore W4313333259C162324750 @default.
- W4313333259 hasConceptScore W4313333259C163716315 @default.
- W4313333259 hasConceptScore W4313333259C165818556 @default.
- W4313333259 hasConceptScore W4313333259C176217482 @default.
- W4313333259 hasConceptScore W4313333259C21547014 @default.
- W4313333259 hasConceptScore W4313333259C2524010 @default.
- W4313333259 hasConceptScore W4313333259C27438332 @default.
- W4313333259 hasConceptScore W4313333259C2776401178 @default.
- W4313333259 hasConceptScore W4313333259C31972630 @default.
- W4313333259 hasConceptScore W4313333259C33923547 @default.
- W4313333259 hasConceptScore W4313333259C41008148 @default.
- W4313333259 hasConceptScore W4313333259C41895202 @default.
- W4313333259 hasConceptScore W4313333259C61326573 @default.
- W4313333259 hasConceptScore W4313333259C62520636 @default.
- W4313333259 hasConceptScore W4313333259C83665646 @default.
- W4313333259 hasLocation W43133332591 @default.
- W4313333259 hasLocation W43133332592 @default.