Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313333344> ?p ?o ?g. }
- W4313333344 endingPage "16" @default.
- W4313333344 startingPage "16" @default.
- W4313333344 abstract "Stute presented the so-called conditional U-statistics generalizing the Nadaraya–Watson estimates of the regression function. Stute demonstrated their pointwise consistency and the asymptotic normality. In this paper, we extend the results to a more abstract setting. We develop an asymptotic theory of conditional U-statistics for locally stationary random fields {Xs,An:sinRn} observed at irregularly spaced locations in Rn=[0,An]d as a subset of Rd. We employ a stochastic sampling scheme that may create irregularly spaced sampling sites in a flexible manner and includes both pure and mixed increasing domain frameworks. We specifically examine the rate of the strong uniform convergence and the weak convergence of conditional U-processes when the explicative variable is functional. We examine the weak convergence where the class of functions is either bounded or unbounded and satisfies specific moment conditions. These results are achieved under somewhat general structural conditions pertaining to the classes of functions and the underlying models. The theoretical results developed in this paper are (or will be) essential building blocks for several future breakthroughs in functional data analysis." @default.
- W4313333344 created "2023-01-06" @default.
- W4313333344 creator A5026925187 @default.
- W4313333344 creator A5066122766 @default.
- W4313333344 date "2022-12-20" @default.
- W4313333344 modified "2023-09-25" @default.
- W4313333344 title "Non-Parametric Conditional U-Processes for Locally Stationary Functional Random Fields under Stochastic Sampling Design" @default.
- W4313333344 cites W1460189015 @default.
- W4313333344 cites W1480812382 @default.
- W4313333344 cites W1490654344 @default.
- W4313333344 cites W1507545330 @default.
- W4313333344 cites W1578330309 @default.
- W4313333344 cites W1623039885 @default.
- W4313333344 cites W1666526391 @default.
- W4313333344 cites W1848067327 @default.
- W4313333344 cites W1921453216 @default.
- W4313333344 cites W1963734153 @default.
- W4313333344 cites W1965262378 @default.
- W4313333344 cites W1966276654 @default.
- W4313333344 cites W1969944392 @default.
- W4313333344 cites W1970211457 @default.
- W4313333344 cites W1974912783 @default.
- W4313333344 cites W1978180266 @default.
- W4313333344 cites W1979995328 @default.
- W4313333344 cites W1990139510 @default.
- W4313333344 cites W1990666749 @default.
- W4313333344 cites W1991181610 @default.
- W4313333344 cites W1991365037 @default.
- W4313333344 cites W1992820788 @default.
- W4313333344 cites W1995065393 @default.
- W4313333344 cites W1998278868 @default.
- W4313333344 cites W2008501660 @default.
- W4313333344 cites W2010353172 @default.
- W4313333344 cites W2012201852 @default.
- W4313333344 cites W2014268383 @default.
- W4313333344 cites W2016552221 @default.
- W4313333344 cites W2018331222 @default.
- W4313333344 cites W2030189596 @default.
- W4313333344 cites W2032968393 @default.
- W4313333344 cites W2037145521 @default.
- W4313333344 cites W2037662723 @default.
- W4313333344 cites W2038454137 @default.
- W4313333344 cites W2039002635 @default.
- W4313333344 cites W2039457361 @default.
- W4313333344 cites W2045434623 @default.
- W4313333344 cites W2046649362 @default.
- W4313333344 cites W2049552229 @default.
- W4313333344 cites W2050300938 @default.
- W4313333344 cites W2052113651 @default.
- W4313333344 cites W2055555443 @default.
- W4313333344 cites W2055657159 @default.
- W4313333344 cites W2058762740 @default.
- W4313333344 cites W2060827238 @default.
- W4313333344 cites W2061905469 @default.
- W4313333344 cites W2066744638 @default.
- W4313333344 cites W2071307652 @default.
- W4313333344 cites W2074533663 @default.
- W4313333344 cites W2074723051 @default.
- W4313333344 cites W2075302537 @default.
- W4313333344 cites W2075672181 @default.
- W4313333344 cites W2083194629 @default.
- W4313333344 cites W2087150972 @default.
- W4313333344 cites W2093208925 @default.
- W4313333344 cites W2093455843 @default.
- W4313333344 cites W2094740596 @default.
- W4313333344 cites W2101011525 @default.
- W4313333344 cites W2118021080 @default.
- W4313333344 cites W2120409188 @default.
- W4313333344 cites W2129129923 @default.
- W4313333344 cites W2131677914 @default.
- W4313333344 cites W2134536175 @default.
- W4313333344 cites W2136404054 @default.
- W4313333344 cites W2136691247 @default.
- W4313333344 cites W2153277258 @default.
- W4313333344 cites W2164835120 @default.
- W4313333344 cites W2169001471 @default.
- W4313333344 cites W2285608450 @default.
- W4313333344 cites W2326962537 @default.
- W4313333344 cites W2463808992 @default.
- W4313333344 cites W2526282605 @default.
- W4313333344 cites W2551955265 @default.
- W4313333344 cites W2794854222 @default.
- W4313333344 cites W2831911354 @default.
- W4313333344 cites W2903456956 @default.
- W4313333344 cites W2908289211 @default.
- W4313333344 cites W2912764889 @default.
- W4313333344 cites W2918772758 @default.
- W4313333344 cites W2964027658 @default.
- W4313333344 cites W2976837224 @default.
- W4313333344 cites W3020847552 @default.
- W4313333344 cites W3024687055 @default.
- W4313333344 cites W3083787495 @default.
- W4313333344 cites W3093192431 @default.
- W4313333344 cites W3103828398 @default.
- W4313333344 cites W3122448711 @default.
- W4313333344 cites W3161332554 @default.
- W4313333344 cites W3168733445 @default.
- W4313333344 cites W3205327183 @default.