Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313334061> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4313334061 endingPage "127200" @default.
- W4313334061 startingPage "127200" @default.
- W4313334061 abstract "Identifying the specific reservoir properties that influence oil production is an essential part of field development planning. Distinguishing the relative influence of variables and eliminating those that have no influence assists the design of enhanced oil recovery processes. The conventional approach to identify the most influential variables is the multiple linear regression (MLR) step-wise elimination. Bayesian averaging (BA), a stochastic method, offers a novel alternative approach by generating fifty models compared to each other to select the best one with of the most influential parameters based on the highest R2 and posterior probability with the lowest value of Bayesian information criterion (BIC). BA and MLR step-wise elimination are compared in the evaluation of a simulated immiscible carbon dioxide-assisted gravity drainage (CO2-AGD) system applied to the multi-layered, heterogeneous, upper sandstone oil reservoir of the South Rumaila field. A history-matched compositional simulation covering the nearly 57 years of prior production is used for sensitivity analysis of reservoir variables in relation to CO2-AGD implementation over 10 future years with 22 additional CO2 injection wells and 11 new production wells. Oil is displaced downwards towards the new horizontal production wells installed above the oil water contact. The influential variables evaluated are permeability (K), permeability anisotropy (Kv/Kh) and porosity (ɸ) considered separately across multiple heterogeneous reservoir layers. BA and step-wise elimination methods identify K as the most influential variable in all reservoir layers. Kv/Kh is moderately influential in the production layers and underlying water zone but not in injection or transition reservoir layers. ɸ in all reservoir layers has no influence on oil recovery from the CO2-AGD producing wells. More specifically, the BA-based influential parameters were determined after selecting the best model among the fifty generated models. The best model achieved that highest values of R2 of 0.848 and posterior probability of 0.234, and the lowest value of BIC of −149 with 12 identified influential geological parameters across the reservoir layers. Based on validation tests, varying K, Kv/Kh. and ɸ substantially across all reservoir layers confirms these findings and agrees more closely with the BA-derived reduced variable models than those generated by MLR step-wise elimination." @default.
- W4313334061 created "2023-01-06" @default.
- W4313334061 creator A5027047123 @default.
- W4313334061 creator A5028777364 @default.
- W4313334061 creator A5046024247 @default.
- W4313334061 creator A5055558439 @default.
- W4313334061 date "2023-04-01" @default.
- W4313334061 modified "2023-10-16" @default.
- W4313334061 title "Bayesian averaging sensitivity analysis of reservoir heterogeneity and anisotropy of carbon dioxide assisted gravity drainage of a large clastic oil reservoir" @default.
- W4313334061 cites W1972663642 @default.
- W4313334061 cites W1972971446 @default.
- W4313334061 cites W1975462736 @default.
- W4313334061 cites W1977184421 @default.
- W4313334061 cites W1981491868 @default.
- W4313334061 cites W2010746895 @default.
- W4313334061 cites W2028245067 @default.
- W4313334061 cites W2040538784 @default.
- W4313334061 cites W2047305955 @default.
- W4313334061 cites W2057331441 @default.
- W4313334061 cites W2064094742 @default.
- W4313334061 cites W2068852650 @default.
- W4313334061 cites W2074282020 @default.
- W4313334061 cites W2086155716 @default.
- W4313334061 cites W2089763487 @default.
- W4313334061 cites W2120806788 @default.
- W4313334061 cites W2128477700 @default.
- W4313334061 cites W2129531883 @default.
- W4313334061 cites W2138936157 @default.
- W4313334061 cites W2168175751 @default.
- W4313334061 cites W2318471324 @default.
- W4313334061 cites W2548507216 @default.
- W4313334061 cites W2605198429 @default.
- W4313334061 cites W2763355826 @default.
- W4313334061 cites W4211177544 @default.
- W4313334061 cites W4237151101 @default.
- W4313334061 cites W4247680473 @default.
- W4313334061 doi "https://doi.org/10.1016/j.fuel.2022.127200" @default.
- W4313334061 hasPublicationYear "2023" @default.
- W4313334061 type Work @default.
- W4313334061 citedByCount "2" @default.
- W4313334061 countsByYear W43133340612023 @default.
- W4313334061 crossrefType "journal-article" @default.
- W4313334061 hasAuthorship W4313334061A5027047123 @default.
- W4313334061 hasAuthorship W4313334061A5028777364 @default.
- W4313334061 hasAuthorship W4313334061A5046024247 @default.
- W4313334061 hasAuthorship W4313334061A5055558439 @default.
- W4313334061 hasConcept C120882062 @default.
- W4313334061 hasConcept C121332964 @default.
- W4313334061 hasConcept C127313418 @default.
- W4313334061 hasConcept C14641988 @default.
- W4313334061 hasConcept C159390177 @default.
- W4313334061 hasConcept C185592680 @default.
- W4313334061 hasConcept C199289684 @default.
- W4313334061 hasConcept C2776364302 @default.
- W4313334061 hasConcept C2778668878 @default.
- W4313334061 hasConcept C2987168347 @default.
- W4313334061 hasConcept C39432304 @default.
- W4313334061 hasConcept C41625074 @default.
- W4313334061 hasConcept C43785746 @default.
- W4313334061 hasConcept C55493867 @default.
- W4313334061 hasConcept C62520636 @default.
- W4313334061 hasConcept C78762247 @default.
- W4313334061 hasConcept C85725439 @default.
- W4313334061 hasConceptScore W4313334061C120882062 @default.
- W4313334061 hasConceptScore W4313334061C121332964 @default.
- W4313334061 hasConceptScore W4313334061C127313418 @default.
- W4313334061 hasConceptScore W4313334061C14641988 @default.
- W4313334061 hasConceptScore W4313334061C159390177 @default.
- W4313334061 hasConceptScore W4313334061C185592680 @default.
- W4313334061 hasConceptScore W4313334061C199289684 @default.
- W4313334061 hasConceptScore W4313334061C2776364302 @default.
- W4313334061 hasConceptScore W4313334061C2778668878 @default.
- W4313334061 hasConceptScore W4313334061C2987168347 @default.
- W4313334061 hasConceptScore W4313334061C39432304 @default.
- W4313334061 hasConceptScore W4313334061C41625074 @default.
- W4313334061 hasConceptScore W4313334061C43785746 @default.
- W4313334061 hasConceptScore W4313334061C55493867 @default.
- W4313334061 hasConceptScore W4313334061C62520636 @default.
- W4313334061 hasConceptScore W4313334061C78762247 @default.
- W4313334061 hasConceptScore W4313334061C85725439 @default.
- W4313334061 hasLocation W43133340611 @default.
- W4313334061 hasOpenAccess W4313334061 @default.
- W4313334061 hasPrimaryLocation W43133340611 @default.
- W4313334061 hasRelatedWork W143867506 @default.
- W4313334061 hasRelatedWork W1575337584 @default.
- W4313334061 hasRelatedWork W2018492195 @default.
- W4313334061 hasRelatedWork W2083461136 @default.
- W4313334061 hasRelatedWork W2120259590 @default.
- W4313334061 hasRelatedWork W2352366930 @default.
- W4313334061 hasRelatedWork W2385223743 @default.
- W4313334061 hasRelatedWork W2735296893 @default.
- W4313334061 hasRelatedWork W2891761666 @default.
- W4313334061 hasRelatedWork W2224141298 @default.
- W4313334061 hasVolume "337" @default.
- W4313334061 isParatext "false" @default.
- W4313334061 isRetracted "false" @default.
- W4313334061 workType "article" @default.