Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313334435> ?p ?o ?g. }
- W4313334435 endingPage "106482" @default.
- W4313334435 startingPage "106482" @default.
- W4313334435 abstract "Understanding prognosis and mortality is critical for evaluating the treatment plan of patients. Advances in digital pathology and deep learning techniques have made it practical to perform survival analysis in whole slide images (WSIs). Current methods are usually based on a multi-stage framework which includes patch sampling, feature extraction and prediction. However, the random patch sampling strategy is highly unstable and prone to sampling non-ROI. Feature extraction typically relies on hand-crafted features or convolutional neural networks (CNNs) pre-trained on ImageNet, while the artificial error or domain gaps may affect the survival prediction performance. Besides, the limited information representation of local sampling patches will create a bottleneck limitation on the effectiveness of prediction. To address the above challenges, we propose a novel patch sampling strategy based on image information entropy and construct a Multi-Scale feature Fusion Network (MSFN) based on self-supervised feature extractor. Specifically, we adopt image information entropy as a criterion to select representative sampling patches, thereby avoiding the noise interference caused by random to blank regions. Meanwhile, we pretrain the feature extractor utilizing self-supervised learning mechanism to improve the efficiency of feature extraction. Furthermore, a global-local feature fusion prediction network based on the attention mechanism is constructed to improve the survival prediction effect of WSIs with comprehensive multi-scale information representation. The proposed method is validated by adequate experiments and achieves competitive results on both of the most popular WSIs survival analysis datasets, TCGA-GBM and TCGA-LUSC. Code and trained models are made available at: https://github.com/Mercuriiio/MSFN." @default.
- W4313334435 created "2023-01-06" @default.
- W4313334435 creator A5047045552 @default.
- W4313334435 creator A5064655543 @default.
- W4313334435 creator A5066553282 @default.
- W4313334435 creator A5072912487 @default.
- W4313334435 creator A5078915518 @default.
- W4313334435 creator A5082893297 @default.
- W4313334435 date "2023-02-01" @default.
- W4313334435 modified "2023-10-06" @default.
- W4313334435 title "Self-supervised learning-based Multi-Scale feature Fusion Network for survival analysis from whole slide images" @default.
- W4313334435 cites W1977653087 @default.
- W4313334435 cites W1984692997 @default.
- W4313334435 cites W1988512338 @default.
- W4313334435 cites W2022495797 @default.
- W4313334435 cites W2082468369 @default.
- W4313334435 cites W2105739910 @default.
- W4313334435 cites W2109242212 @default.
- W4313334435 cites W2117438495 @default.
- W4313334435 cites W2126415088 @default.
- W4313334435 cites W2128985829 @default.
- W4313334435 cites W2130448611 @default.
- W4313334435 cites W2149199519 @default.
- W4313334435 cites W2163149604 @default.
- W4313334435 cites W2200290088 @default.
- W4313334435 cites W2514628397 @default.
- W4313334435 cites W2618530766 @default.
- W4313334435 cites W2745940724 @default.
- W4313334435 cites W2761668583 @default.
- W4313334435 cites W3034781633 @default.
- W4313334435 cites W3035542568 @default.
- W4313334435 cites W3043535018 @default.
- W4313334435 cites W3043835773 @default.
- W4313334435 cites W3114632476 @default.
- W4313334435 cites W3120430728 @default.
- W4313334435 cites W3160261825 @default.
- W4313334435 cites W3215159356 @default.
- W4313334435 cites W4200311016 @default.
- W4313334435 cites W4226181149 @default.
- W4313334435 cites W4293241248 @default.
- W4313334435 cites W4313156423 @default.
- W4313334435 doi "https://doi.org/10.1016/j.compbiomed.2022.106482" @default.
- W4313334435 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36586231" @default.
- W4313334435 hasPublicationYear "2023" @default.
- W4313334435 type Work @default.
- W4313334435 citedByCount "1" @default.
- W4313334435 crossrefType "journal-article" @default.
- W4313334435 hasAuthorship W4313334435A5047045552 @default.
- W4313334435 hasAuthorship W4313334435A5064655543 @default.
- W4313334435 hasAuthorship W4313334435A5066553282 @default.
- W4313334435 hasAuthorship W4313334435A5072912487 @default.
- W4313334435 hasAuthorship W4313334435A5078915518 @default.
- W4313334435 hasAuthorship W4313334435A5082893297 @default.
- W4313334435 hasConcept C106301342 @default.
- W4313334435 hasConcept C119857082 @default.
- W4313334435 hasConcept C121332964 @default.
- W4313334435 hasConcept C124101348 @default.
- W4313334435 hasConcept C138885662 @default.
- W4313334435 hasConcept C153180895 @default.
- W4313334435 hasConcept C154945302 @default.
- W4313334435 hasConcept C169258074 @default.
- W4313334435 hasConcept C2776401178 @default.
- W4313334435 hasConcept C41008148 @default.
- W4313334435 hasConcept C41895202 @default.
- W4313334435 hasConcept C52622490 @default.
- W4313334435 hasConcept C59404180 @default.
- W4313334435 hasConcept C62520636 @default.
- W4313334435 hasConcept C81363708 @default.
- W4313334435 hasConceptScore W4313334435C106301342 @default.
- W4313334435 hasConceptScore W4313334435C119857082 @default.
- W4313334435 hasConceptScore W4313334435C121332964 @default.
- W4313334435 hasConceptScore W4313334435C124101348 @default.
- W4313334435 hasConceptScore W4313334435C138885662 @default.
- W4313334435 hasConceptScore W4313334435C153180895 @default.
- W4313334435 hasConceptScore W4313334435C154945302 @default.
- W4313334435 hasConceptScore W4313334435C169258074 @default.
- W4313334435 hasConceptScore W4313334435C2776401178 @default.
- W4313334435 hasConceptScore W4313334435C41008148 @default.
- W4313334435 hasConceptScore W4313334435C41895202 @default.
- W4313334435 hasConceptScore W4313334435C52622490 @default.
- W4313334435 hasConceptScore W4313334435C59404180 @default.
- W4313334435 hasConceptScore W4313334435C62520636 @default.
- W4313334435 hasConceptScore W4313334435C81363708 @default.
- W4313334435 hasLocation W43133344351 @default.
- W4313334435 hasLocation W43133344352 @default.
- W4313334435 hasOpenAccess W4313334435 @default.
- W4313334435 hasPrimaryLocation W43133344351 @default.
- W4313334435 hasRelatedWork W2146076056 @default.
- W4313334435 hasRelatedWork W2546942002 @default.
- W4313334435 hasRelatedWork W2592385986 @default.
- W4313334435 hasRelatedWork W2811390910 @default.
- W4313334435 hasRelatedWork W2913302899 @default.
- W4313334435 hasRelatedWork W2970216048 @default.
- W4313334435 hasRelatedWork W3027997911 @default.
- W4313334435 hasRelatedWork W4287776258 @default.
- W4313334435 hasRelatedWork W4308191010 @default.
- W4313334435 hasRelatedWork W4312376745 @default.
- W4313334435 hasVolume "153" @default.