Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313334462> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4313334462 endingPage "200168" @default.
- W4313334462 startingPage "200168" @default.
- W4313334462 abstract "Electricity theft is one of the main nontechnical losses (NTLs) in distributed networks which cause significant harm to the power grids. As power grids provide the centralized power to all the connected consumers, therefore, any fraudulent consumption can cause harm to the power grids which can damage the whole electric power supply and can influence its quality. The detection of such fraudulent consumers becomes difficult when there is a large amount of data. Smart grids can be used to solve this problem as it provides a two-way electricity flow which allows someone to detect, reenact and apply new changes to the electric data flow. The existing systems for electricity theft detection, works on the principle of one dimensional (1-D) electric data, which provides poor accuracy in theft detection. Therefore, an ensemble model based on convolutional neural network and extreme gradient boosting (CNN-XGB) model is presented in this paper. In this model both one dimensional (1-D) and two-dimensional (2-D) electricity consumption data are used to pass to the CNN model. Proposed model achieved the accuracy of 92% for electricity theft detection, which is better than existing models." @default.
- W4313334462 created "2023-01-06" @default.
- W4313334462 creator A5017553687 @default.
- W4313334462 creator A5030939801 @default.
- W4313334462 creator A5047520528 @default.
- W4313334462 creator A5053624282 @default.
- W4313334462 creator A5069406943 @default.
- W4313334462 date "2023-02-01" @default.
- W4313334462 modified "2023-09-22" @default.
- W4313334462 title "A novel technique for detecting electricity theft in secure smart grids using CNN and XG-boost" @default.
- W4313334462 cites W1964303812 @default.
- W4313334462 cites W2042704389 @default.
- W4313334462 cites W2324861975 @default.
- W4313334462 cites W2337877735 @default.
- W4313334462 cites W2537789422 @default.
- W4313334462 cites W2729222988 @default.
- W4313334462 cites W2970705010 @default.
- W4313334462 cites W3037931488 @default.
- W4313334462 cites W3039814348 @default.
- W4313334462 cites W3102622721 @default.
- W4313334462 cites W3127698769 @default.
- W4313334462 cites W3154031915 @default.
- W4313334462 cites W3185631424 @default.
- W4313334462 cites W3192885136 @default.
- W4313334462 cites W4205185142 @default.
- W4313334462 cites W4206529579 @default.
- W4313334462 cites W4210830905 @default.
- W4313334462 doi "https://doi.org/10.1016/j.iswa.2022.200168" @default.
- W4313334462 hasPublicationYear "2023" @default.
- W4313334462 type Work @default.
- W4313334462 citedByCount "1" @default.
- W4313334462 countsByYear W43133344622023 @default.
- W4313334462 crossrefType "journal-article" @default.
- W4313334462 hasAuthorship W4313334462A5017553687 @default.
- W4313334462 hasAuthorship W4313334462A5030939801 @default.
- W4313334462 hasAuthorship W4313334462A5047520528 @default.
- W4313334462 hasAuthorship W4313334462A5053624282 @default.
- W4313334462 hasAuthorship W4313334462A5069406943 @default.
- W4313334462 hasBestOaLocation W43133344621 @default.
- W4313334462 hasConcept C10558101 @default.
- W4313334462 hasConcept C119599485 @default.
- W4313334462 hasConcept C121332964 @default.
- W4313334462 hasConcept C127413603 @default.
- W4313334462 hasConcept C154945302 @default.
- W4313334462 hasConcept C163258240 @default.
- W4313334462 hasConcept C206658404 @default.
- W4313334462 hasConcept C40293303 @default.
- W4313334462 hasConcept C41008148 @default.
- W4313334462 hasConcept C62520636 @default.
- W4313334462 hasConcept C79403827 @default.
- W4313334462 hasConcept C81363708 @default.
- W4313334462 hasConceptScore W4313334462C10558101 @default.
- W4313334462 hasConceptScore W4313334462C119599485 @default.
- W4313334462 hasConceptScore W4313334462C121332964 @default.
- W4313334462 hasConceptScore W4313334462C127413603 @default.
- W4313334462 hasConceptScore W4313334462C154945302 @default.
- W4313334462 hasConceptScore W4313334462C163258240 @default.
- W4313334462 hasConceptScore W4313334462C206658404 @default.
- W4313334462 hasConceptScore W4313334462C40293303 @default.
- W4313334462 hasConceptScore W4313334462C41008148 @default.
- W4313334462 hasConceptScore W4313334462C62520636 @default.
- W4313334462 hasConceptScore W4313334462C79403827 @default.
- W4313334462 hasConceptScore W4313334462C81363708 @default.
- W4313334462 hasLocation W43133344621 @default.
- W4313334462 hasOpenAccess W4313334462 @default.
- W4313334462 hasPrimaryLocation W43133344621 @default.
- W4313334462 hasRelatedWork W2735477435 @default.
- W4313334462 hasRelatedWork W2748454020 @default.
- W4313334462 hasRelatedWork W2807436399 @default.
- W4313334462 hasRelatedWork W3001728219 @default.
- W4313334462 hasRelatedWork W3016958897 @default.
- W4313334462 hasRelatedWork W3045739591 @default.
- W4313334462 hasRelatedWork W3119610945 @default.
- W4313334462 hasRelatedWork W3181746755 @default.
- W4313334462 hasRelatedWork W4283379348 @default.
- W4313334462 hasRelatedWork W4312417841 @default.
- W4313334462 hasVolume "17" @default.
- W4313334462 isParatext "false" @default.
- W4313334462 isRetracted "false" @default.
- W4313334462 workType "article" @default.