Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313334502> ?p ?o ?g. }
- W4313334502 endingPage "389" @default.
- W4313334502 startingPage "377" @default.
- W4313334502 abstract "Distracting while driving is a serious issue that causes serious direct and indirect harm to the society. To avoid these problems, detecting dangerous drivers’ behaviour is very important.This research focuses on detecting driver behaviour with a combination of artificial deep learning and machine learning models with genetic algorithm. Most of the previous works have focused on using convolutional neural network as deep learning model or support vector machine as machine learning model for actions detection of drivers from input images. The proposed structure will use genetic algorithms to first choose the structure of feature extractor from famous CNN models such as VGG19, ResNet50, and DenseNet121. After mentioning feature extractor, proposed framework contains two layer of dense layer for classification as a deep learning model. On the machine learning side K nearest neighbor, random forest, support vector machine, and extreme boost algorithms have been used as classifiers. Genetic algorithms will specify number of neurons and activation functions of these layers for deep learning and hyperparameters such as number of estimators for machine learning models. Proposed model has been developed with the use of state farm dataset that contains information of 1 safe driving class and 9 dangerous behaviours such as texting while driving, talking with passengers, drinking, etc. Experimental results indicate 99.80% accuracy for classification of the state farm distracted driver detection with combination of genetic algorithms and deep neural networks. Compared to similar research, the proposed approach has shown superior results for classification of state farm distracted driver detection. Proposed approach chooses the feature extraction model and hyperparameters of the classification layer automatically. Thus it can be used for driving behaviour classification with seeing new situation too. Proposed framework can be used as a real time driver’s distraction detection to decrease car traffic accidents and alleviate corresponding damages to the drivers." @default.
- W4313334502 created "2023-01-06" @default.
- W4313334502 creator A5041611314 @default.
- W4313334502 date "2023-03-01" @default.
- W4313334502 modified "2023-10-04" @default.
- W4313334502 title "Real-time driver distraction recognition: A hybrid genetic deep network based approach" @default.
- W4313334502 cites W2097034581 @default.
- W4313334502 cites W2155632266 @default.
- W4313334502 cites W2412479940 @default.
- W4313334502 cites W2558580397 @default.
- W4313334502 cites W2778455075 @default.
- W4313334502 cites W2797648991 @default.
- W4313334502 cites W2895929517 @default.
- W4313334502 cites W2899723212 @default.
- W4313334502 cites W2903943450 @default.
- W4313334502 cites W2912290085 @default.
- W4313334502 cites W2912346386 @default.
- W4313334502 cites W2922015385 @default.
- W4313334502 cites W2953565132 @default.
- W4313334502 cites W2955793676 @default.
- W4313334502 cites W2984146493 @default.
- W4313334502 cites W2989682887 @default.
- W4313334502 cites W2992790584 @default.
- W4313334502 cites W2993471286 @default.
- W4313334502 cites W3015399579 @default.
- W4313334502 cites W3026578319 @default.
- W4313334502 cites W3035542613 @default.
- W4313334502 cites W3036244418 @default.
- W4313334502 cites W3124956299 @default.
- W4313334502 cites W3153065833 @default.
- W4313334502 cites W3210105583 @default.
- W4313334502 cites W4210636230 @default.
- W4313334502 cites W4214583847 @default.
- W4313334502 cites W4234532637 @default.
- W4313334502 cites W4236325002 @default.
- W4313334502 cites W4290647841 @default.
- W4313334502 cites W4293088171 @default.
- W4313334502 cites W4295539426 @default.
- W4313334502 doi "https://doi.org/10.1016/j.aej.2022.12.009" @default.
- W4313334502 hasPublicationYear "2023" @default.
- W4313334502 type Work @default.
- W4313334502 citedByCount "4" @default.
- W4313334502 countsByYear W43133345022023 @default.
- W4313334502 crossrefType "journal-article" @default.
- W4313334502 hasAuthorship W4313334502A5041611314 @default.
- W4313334502 hasBestOaLocation W43133345021 @default.
- W4313334502 hasConcept C108583219 @default.
- W4313334502 hasConcept C117978034 @default.
- W4313334502 hasConcept C119857082 @default.
- W4313334502 hasConcept C12267149 @default.
- W4313334502 hasConcept C127413603 @default.
- W4313334502 hasConcept C138885662 @default.
- W4313334502 hasConcept C153180895 @default.
- W4313334502 hasConcept C154945302 @default.
- W4313334502 hasConcept C169258074 @default.
- W4313334502 hasConcept C21880701 @default.
- W4313334502 hasConcept C2776401178 @default.
- W4313334502 hasConcept C2780150128 @default.
- W4313334502 hasConcept C41008148 @default.
- W4313334502 hasConcept C41895202 @default.
- W4313334502 hasConcept C50644808 @default.
- W4313334502 hasConcept C81363708 @default.
- W4313334502 hasConcept C8642999 @default.
- W4313334502 hasConcept C8880873 @default.
- W4313334502 hasConceptScore W4313334502C108583219 @default.
- W4313334502 hasConceptScore W4313334502C117978034 @default.
- W4313334502 hasConceptScore W4313334502C119857082 @default.
- W4313334502 hasConceptScore W4313334502C12267149 @default.
- W4313334502 hasConceptScore W4313334502C127413603 @default.
- W4313334502 hasConceptScore W4313334502C138885662 @default.
- W4313334502 hasConceptScore W4313334502C153180895 @default.
- W4313334502 hasConceptScore W4313334502C154945302 @default.
- W4313334502 hasConceptScore W4313334502C169258074 @default.
- W4313334502 hasConceptScore W4313334502C21880701 @default.
- W4313334502 hasConceptScore W4313334502C2776401178 @default.
- W4313334502 hasConceptScore W4313334502C2780150128 @default.
- W4313334502 hasConceptScore W4313334502C41008148 @default.
- W4313334502 hasConceptScore W4313334502C41895202 @default.
- W4313334502 hasConceptScore W4313334502C50644808 @default.
- W4313334502 hasConceptScore W4313334502C81363708 @default.
- W4313334502 hasConceptScore W4313334502C8642999 @default.
- W4313334502 hasConceptScore W4313334502C8880873 @default.
- W4313334502 hasLocation W43133345021 @default.
- W4313334502 hasOpenAccess W4313334502 @default.
- W4313334502 hasPrimaryLocation W43133345021 @default.
- W4313334502 hasRelatedWork W2937631562 @default.
- W4313334502 hasRelatedWork W2968586400 @default.
- W4313334502 hasRelatedWork W3130227562 @default.
- W4313334502 hasRelatedWork W3195168932 @default.
- W4313334502 hasRelatedWork W3211546796 @default.
- W4313334502 hasRelatedWork W4220996320 @default.
- W4313334502 hasRelatedWork W4223564025 @default.
- W4313334502 hasRelatedWork W4281616679 @default.
- W4313334502 hasRelatedWork W4375930479 @default.
- W4313334502 hasRelatedWork W4384300587 @default.
- W4313334502 hasVolume "66" @default.
- W4313334502 isParatext "false" @default.
- W4313334502 isRetracted "false" @default.