Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313334525> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4313334525 abstract "In healthcare, the decision-making process is crucial, including COVID-19 prevention methods should include fast diagnostic methods. Computed tomography (CT) is used to diagnose COVID patients’ conditions. There is inherent variation in the texture of a CT image of COVID, much like the texture of a CT image of pneumonia. The process of diagnosing COVID images manually is difficult and challenging. Using low-resolution images and a small COVID dataset, the extraction of discriminant characteristics and fine-tuning of hyperparameters in classifiers provide challenges for computer-assisted diagnosis. In radiomics, quantitative image analysis is frequently used to evaluate the prognosis and diagnose diseases. This research tests an ML model built on GLCM features collected from chest CT images to screen for COVID-19. In this study, Support Vector Machines, K-nearest neighbors, Random Forest, and XGBoost classifiers are used together with LBGM. Tuning tests were used to regulate the hyperparameters of the model. With cross-validation, tenfold results were obtained. Random Forest and SVM were the best classification methods for GLCM features with an overall accuracy of 99.94%. The network’s performance was assessed in terms of sensitivity, accuracy, and specificity." @default.
- W4313334525 created "2023-01-06" @default.
- W4313334525 creator A5006041753 @default.
- W4313334525 creator A5023201815 @default.
- W4313334525 date "2022-12-29" @default.
- W4313334525 modified "2023-09-27" @default.
- W4313334525 title "Screening of COVID-19 Based on GLCM Features from CT Images Using Machine Learning Classifiers" @default.
- W4313334525 cites W2313422996 @default.
- W4313334525 cites W2767128594 @default.
- W4313334525 cites W3003228332 @default.
- W4313334525 cites W3011414569 @default.
- W4313334525 cites W3016610966 @default.
- W4313334525 cites W3016636869 @default.
- W4313334525 cites W3021820492 @default.
- W4313334525 cites W3024005803 @default.
- W4313334525 cites W3037538421 @default.
- W4313334525 cites W3046722451 @default.
- W4313334525 cites W3049516045 @default.
- W4313334525 cites W3080635718 @default.
- W4313334525 cites W3129576291 @default.
- W4313334525 cites W3133191822 @default.
- W4313334525 cites W3135243128 @default.
- W4313334525 cites W3150035760 @default.
- W4313334525 cites W3154663234 @default.
- W4313334525 cites W3159466710 @default.
- W4313334525 cites W3168156287 @default.
- W4313334525 cites W4312650671 @default.
- W4313334525 doi "https://doi.org/10.1007/s42979-022-01583-2" @default.
- W4313334525 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36593973" @default.
- W4313334525 hasPublicationYear "2022" @default.
- W4313334525 type Work @default.
- W4313334525 citedByCount "2" @default.
- W4313334525 countsByYear W43133345252023 @default.
- W4313334525 crossrefType "journal-article" @default.
- W4313334525 hasAuthorship W4313334525A5006041753 @default.
- W4313334525 hasAuthorship W4313334525A5023201815 @default.
- W4313334525 hasBestOaLocation W43133345251 @default.
- W4313334525 hasConcept C119857082 @default.
- W4313334525 hasConcept C12267149 @default.
- W4313334525 hasConcept C142724271 @default.
- W4313334525 hasConcept C153180895 @default.
- W4313334525 hasConcept C154945302 @default.
- W4313334525 hasConcept C169258074 @default.
- W4313334525 hasConcept C2779134260 @default.
- W4313334525 hasConcept C3008058167 @default.
- W4313334525 hasConcept C41008148 @default.
- W4313334525 hasConcept C524204448 @default.
- W4313334525 hasConcept C71924100 @default.
- W4313334525 hasConcept C8642999 @default.
- W4313334525 hasConceptScore W4313334525C119857082 @default.
- W4313334525 hasConceptScore W4313334525C12267149 @default.
- W4313334525 hasConceptScore W4313334525C142724271 @default.
- W4313334525 hasConceptScore W4313334525C153180895 @default.
- W4313334525 hasConceptScore W4313334525C154945302 @default.
- W4313334525 hasConceptScore W4313334525C169258074 @default.
- W4313334525 hasConceptScore W4313334525C2779134260 @default.
- W4313334525 hasConceptScore W4313334525C3008058167 @default.
- W4313334525 hasConceptScore W4313334525C41008148 @default.
- W4313334525 hasConceptScore W4313334525C524204448 @default.
- W4313334525 hasConceptScore W4313334525C71924100 @default.
- W4313334525 hasConceptScore W4313334525C8642999 @default.
- W4313334525 hasIssue "2" @default.
- W4313334525 hasLocation W43133345251 @default.
- W4313334525 hasLocation W43133345252 @default.
- W4313334525 hasLocation W43133345253 @default.
- W4313334525 hasOpenAccess W4313334525 @default.
- W4313334525 hasPrimaryLocation W43133345251 @default.
- W4313334525 hasRelatedWork W2985924212 @default.
- W4313334525 hasRelatedWork W3195168932 @default.
- W4313334525 hasRelatedWork W4210794429 @default.
- W4313334525 hasRelatedWork W4295309597 @default.
- W4313334525 hasRelatedWork W4321636153 @default.
- W4313334525 hasRelatedWork W4322775603 @default.
- W4313334525 hasRelatedWork W4362544620 @default.
- W4313334525 hasRelatedWork W4375930479 @default.
- W4313334525 hasRelatedWork W4377964522 @default.
- W4313334525 hasRelatedWork W2345184372 @default.
- W4313334525 hasVolume "4" @default.
- W4313334525 isParatext "false" @default.
- W4313334525 isRetracted "false" @default.
- W4313334525 workType "article" @default.