Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313334552> ?p ?o ?g. }
- W4313334552 endingPage "714" @default.
- W4313334552 startingPage "706" @default.
- W4313334552 abstract "CRISPR-Cas, as a tool for gene editing, has received extensive attention in recent years. Anti-CRISPR (Acr) proteins can inactivate the CRISPR-Cas defense system during interference phase, and can be used as a potential tool for the regulation of gene editing. In-depth study of Anti-CRISPR proteins is of great significance for the implementation of gene editing. In this study, we developed a high-accuracy prediction model based on two-step model fusion strategy, called AcrPred, which could produce an AUC of 0.952 with independent dataset validation. To further validate the proposed model, we compared with published tools and correctly identified 9 of 10 new Acr proteins, indicating the strong generalization ability of our model. Finally, for the convenience of related wet-experimental researchers, a user-friendly web-server AcrPred (Anti-CRISPR proteins Prediction) was established at http://lin-group.cn/server/AcrPred, by which users can easily identify potential Anti-CRISPR proteins." @default.
- W4313334552 created "2023-01-06" @default.
- W4313334552 creator A5025728076 @default.
- W4313334552 creator A5041539298 @default.
- W4313334552 creator A5051695999 @default.
- W4313334552 creator A5063481044 @default.
- W4313334552 creator A5071349641 @default.
- W4313334552 creator A5073409235 @default.
- W4313334552 creator A5081278212 @default.
- W4313334552 date "2023-02-01" @default.
- W4313334552 modified "2023-10-16" @default.
- W4313334552 title "AcrPred: A hybrid optimization with enumerated machine learning algorithm to predict Anti-CRISPR proteins" @default.
- W4313334552 cites W2002832354 @default.
- W4313334552 cites W2030793934 @default.
- W4313334552 cites W2043083543 @default.
- W4313334552 cites W2045435533 @default.
- W4313334552 cites W2047672715 @default.
- W4313334552 cites W2055043387 @default.
- W4313334552 cites W2064815984 @default.
- W4313334552 cites W2074888575 @default.
- W4313334552 cites W2096261947 @default.
- W4313334552 cites W2115434912 @default.
- W4313334552 cites W2128196429 @default.
- W4313334552 cites W2131871423 @default.
- W4313334552 cites W2151757338 @default.
- W4313334552 cites W2157825442 @default.
- W4313334552 cites W2158714788 @default.
- W4313334552 cites W2160051211 @default.
- W4313334552 cites W2169244146 @default.
- W4313334552 cites W2190054909 @default.
- W4313334552 cites W2616853239 @default.
- W4313334552 cites W2757079914 @default.
- W4313334552 cites W2803581084 @default.
- W4313334552 cites W2897791282 @default.
- W4313334552 cites W2901754076 @default.
- W4313334552 cites W2944743307 @default.
- W4313334552 cites W2951382289 @default.
- W4313334552 cites W2951849777 @default.
- W4313334552 cites W2967960129 @default.
- W4313334552 cites W2970071674 @default.
- W4313334552 cites W2979937512 @default.
- W4313334552 cites W3007150491 @default.
- W4313334552 cites W3015370321 @default.
- W4313334552 cites W3022821485 @default.
- W4313334552 cites W3024100655 @default.
- W4313334552 cites W3029055906 @default.
- W4313334552 cites W3037886022 @default.
- W4313334552 cites W3045990256 @default.
- W4313334552 cites W3094567318 @default.
- W4313334552 cites W3097237310 @default.
- W4313334552 cites W3134163647 @default.
- W4313334552 cites W3164208486 @default.
- W4313334552 cites W3176438718 @default.
- W4313334552 cites W4210420480 @default.
- W4313334552 cites W4213224140 @default.
- W4313334552 cites W4220765486 @default.
- W4313334552 cites W4281963872 @default.
- W4313334552 cites W4307583934 @default.
- W4313334552 doi "https://doi.org/10.1016/j.ijbiomac.2022.12.250" @default.
- W4313334552 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36584777" @default.
- W4313334552 hasPublicationYear "2023" @default.
- W4313334552 type Work @default.
- W4313334552 citedByCount "14" @default.
- W4313334552 countsByYear W43133345522023 @default.
- W4313334552 crossrefType "journal-article" @default.
- W4313334552 hasAuthorship W4313334552A5025728076 @default.
- W4313334552 hasAuthorship W4313334552A5041539298 @default.
- W4313334552 hasAuthorship W4313334552A5051695999 @default.
- W4313334552 hasAuthorship W4313334552A5063481044 @default.
- W4313334552 hasAuthorship W4313334552A5071349641 @default.
- W4313334552 hasAuthorship W4313334552A5073409235 @default.
- W4313334552 hasAuthorship W4313334552A5081278212 @default.
- W4313334552 hasConcept C104317684 @default.
- W4313334552 hasConcept C134306372 @default.
- W4313334552 hasConcept C144501496 @default.
- W4313334552 hasConcept C177148314 @default.
- W4313334552 hasConcept C33923547 @default.
- W4313334552 hasConcept C41008148 @default.
- W4313334552 hasConcept C54355233 @default.
- W4313334552 hasConcept C70721500 @default.
- W4313334552 hasConcept C86803240 @default.
- W4313334552 hasConcept C98108389 @default.
- W4313334552 hasConceptScore W4313334552C104317684 @default.
- W4313334552 hasConceptScore W4313334552C134306372 @default.
- W4313334552 hasConceptScore W4313334552C144501496 @default.
- W4313334552 hasConceptScore W4313334552C177148314 @default.
- W4313334552 hasConceptScore W4313334552C33923547 @default.
- W4313334552 hasConceptScore W4313334552C41008148 @default.
- W4313334552 hasConceptScore W4313334552C54355233 @default.
- W4313334552 hasConceptScore W4313334552C70721500 @default.
- W4313334552 hasConceptScore W4313334552C86803240 @default.
- W4313334552 hasConceptScore W4313334552C98108389 @default.
- W4313334552 hasFunder F4320321001 @default.
- W4313334552 hasFunder F4320322725 @default.
- W4313334552 hasFunder F4320336820 @default.
- W4313334552 hasLocation W43133345521 @default.
- W4313334552 hasLocation W43133345522 @default.
- W4313334552 hasOpenAccess W4313334552 @default.