Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313334553> ?p ?o ?g. }
- W4313334553 endingPage "111913" @default.
- W4313334553 startingPage "111913" @default.
- W4313334553 abstract "•DA3 regulates lateral root initiation by modulating auxin signaling in roots•DA3 interacts with SHY2 to synergistically regulate lateral root initiation•DA3 and SHY2 interact with ARF7 and ARF19 and affect their mRNA and protein levels•DA3 and SHY2 suppress LBD16 expression in the pericycle via ARF7 and ARF19 Lateral root (LR) initiation is controlled by the pericycle and the neighboring endodermis in Arabidopsis. Here, we demonstrate that UBIQUITIN-SPECIFIC PROTEASE14/DA3 regulates LR initiation by modulating auxin signaling in the pericycle and endodermis. DA3 negatively affects the mRNA and protein levels of AUXIN RESPONSE FACTOR7 (ARF7) and ARF19 in the pericycle and endodermis but positively regulates the protein stability of SHORT HYPOCOTYL 2 (SHY2/IAA3), an auxin signaling repressor, in the endodermis. We show that DA3 interacts with ARF7 and ARF19, inhibiting their binding to the locus of LATERAL ORGAN BOUNDARY DOMAIN16 (LBD16) to repress its expression in the pericycle. SHY2 also interacts with ARF7 and ARF19 in the endodermis and enhances the DA3 repressive effect on ARF7 and ARF19, thus modulating LBD16 expression in the pericycle. Overall, our findings show that DA3 acts with SHY2, ARF7, and ARF19 to coordinate auxin signaling in the pericycle and endodermis to control LR initiation in Arabidopsis. Lateral root (LR) initiation is controlled by the pericycle and the neighboring endodermis in Arabidopsis. Here, we demonstrate that UBIQUITIN-SPECIFIC PROTEASE14/DA3 regulates LR initiation by modulating auxin signaling in the pericycle and endodermis. DA3 negatively affects the mRNA and protein levels of AUXIN RESPONSE FACTOR7 (ARF7) and ARF19 in the pericycle and endodermis but positively regulates the protein stability of SHORT HYPOCOTYL 2 (SHY2/IAA3), an auxin signaling repressor, in the endodermis. We show that DA3 interacts with ARF7 and ARF19, inhibiting their binding to the locus of LATERAL ORGAN BOUNDARY DOMAIN16 (LBD16) to repress its expression in the pericycle. SHY2 also interacts with ARF7 and ARF19 in the endodermis and enhances the DA3 repressive effect on ARF7 and ARF19, thus modulating LBD16 expression in the pericycle. Overall, our findings show that DA3 acts with SHY2, ARF7, and ARF19 to coordinate auxin signaling in the pericycle and endodermis to control LR initiation in Arabidopsis. Lateral roots (LRs) largely determine root system architecture, which plays a fundamental role in water and nutrient uptake and providing anchorage for plants. LRs initiate from pericycle cells adjacent to xylem poles, but only pericycle cells in root pre-branching sites can be specified as LR founder cells.1Justamante M.S. Ibáñez S. Peidró A. Pérez-Pérez J.M. A genome-wide association study identifies new loci involved in wound-induced lateral root formation in Arabidopsis thaliana.Front. Plant Sci. 2019; 10: 311https://doi.org/10.3389/fpls.2019.00311Crossref PubMed Scopus (3) Google Scholar,2Xuan W. Audenaert D. Parizot B. Möller B.K. Njo M.F. De Rybel B. De Rop G. Van Isterdael G. Mähönen A.P. Vanneste S. Beeckman T. Root cap-derived auxin pre-patterns the longitudinal axis of the Arabidopsis root.Curr. Biol. 2015; 25: 1381-1388https://doi.org/10.1016/j.cub.2015.03.046Abstract Full Text Full Text PDF PubMed Scopus (129) Google Scholar,3Ötvös K. Benková E. Spatiotemporal mechanisms of root branching.Curr. Opin. Genet. Dev. 2017; 45: 82-89https://doi.org/10.1016/j.gde.2017.03.010Crossref PubMed Scopus (10) Google Scholar After oriented cell division and expansion, these founder cells develop into LR primordia (LRPs), which then pass through endodermal, cortical, and epidermal cell layers and finally grow into emerged LRs.4Du Y. Scheres B. Lateral root formation and the multiple roles of auxin.J. Exp. Bot. 2018; 69: 155-167https://doi.org/10.1093/jxb/erx223Crossref PubMed Scopus (200) Google Scholar,5Stoeckle D. Thellmann M. Vermeer J.E. Breakout-lateral root emergence in Arabidopsis thaliana.Curr. Opin. Plant Biol. 2018; 41: 67-72https://doi.org/10.1016/j.pbi.2017.09.005Crossref PubMed Scopus (54) Google Scholar,6Lv B. Wei K. Hu K. Tian T. Zhang F. Yu Z. Zhang D. Su Y. Sang Y. Zhang X. Ding Z. MPK14-mediated auxin signaling controls lateral root development via ERF13-regulated very-long-chain fatty acid biosynthesis.Mol. Plant. 2021; 14: 285-297https://doi.org/10.1016/j.molp.2020.11.011Abstract Full Text Full Text PDF PubMed Scopus (41) Google Scholar As a central plant hormone for root development, auxin indole-3-acetic acid (IAA) regulates a number of LR initiation-related factors in the pericycle.7Goh T. Kasahara H. Mimura T. Kamiya Y. Fukaki H. Multiple AUX/IAA-ARF modules regulate lateral root formation: the role of Arabidopsis SHY2/IAA3-mediated auxin signalling.Philos. Trans. R. Soc. Lond. B Biol. Sci. 2012; 367: 1461-1468https://doi.org/10.1098/rstb.2011.0232Crossref PubMed Scopus (144) Google Scholar,8Dubrovsky J.G. Sauer M. Napsucialy-Mendivil S. Ivanchenko M.G. Friml J. Shishkova S. Celenza J. Benková E. Auxin acts as a local morphogenetic trigger to specify lateral root founder cells.Proc. Natl. Acad. Sci. USA. 2008; 105: 8790-8794https://doi.org/10.1073/pnas.0712307105Crossref PubMed Scopus (462) Google Scholar,9Lee H.W. Cho C. Pandey S.K. Park Y. Kim M.J. Kim J. LBD16 and LBD18 acting downstream of ARF7 and ARF19 are involved in adventitious root formation in Arabidopsis.BMC Plant Biol. 2019; 19: 46https://doi.org/10.1186/s12870-019-1659-4Crossref PubMed Scopus (60) Google Scholar,10Liu Y. von Wirén N. Integration of nutrient and water availabilities via auxin into the root developmental program.Curr. Opin. Plant Biol. 2022; 65: 102117https://doi.org/10.1016/j.pbi.2021.102117Crossref PubMed Scopus (20) Google Scholar,11Zhang F. Tao W. Sun R. Wang J. Li C. Kong X. Tian H. Ding Z. PRH1 mediates ARF7-LBD dependent auxin signaling to regulate lateral root development in Arabidopsis thaliana.PLoS Genet. 2020; 16: e1008044https://doi.org/10.1371/journal.pgen.1008044Crossref PubMed Scopus (29) Google Scholar Among these factors, AUXIN RESPONSE FACTOR7 (ARF7) and ARF19 play major roles in LR initiation.11Zhang F. Tao W. Sun R. Wang J. Li C. Kong X. Tian H. Ding Z. PRH1 mediates ARF7-LBD dependent auxin signaling to regulate lateral root development in Arabidopsis thaliana.PLoS Genet. 2020; 16: e1008044https://doi.org/10.1371/journal.pgen.1008044Crossref PubMed Scopus (29) Google Scholar,12Chen Q. Liu Y. Maere S. Lee E. Van Isterdael G. Xie Z. Xuan W. Lucas J. Vassileva V. Kitakura S. et al.A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development.Nat. Commun. 2015; 6: 8821https://doi.org/10.1038/ncomms9821Crossref PubMed Scopus (63) Google Scholar Their loss-of-function mutant arf7-1 arf19-1 shows dramatically inhibited LR initiation and suppressed expression of the genes related to LR initiation.13Yuan T.T. Xu H.H. Li J. Lu Y.T. Auxin abolishes SHI-RELATED SEQUENCE5-mediated inhibition of lateral root development in Arabidopsis.New Phytol. 2020; 225: 297-309https://doi.org/10.1111/nph.16115Crossref PubMed Scopus (15) Google Scholar,14Xun Q. Wu Y. Li H. Chang J. Ou Y. He K. Gou X. Tax F.E. Li J. Two receptor-like protein kinases, MUSTACHES and MUSTACHES-LIKE, regulate lateral root development in Arabidopsis thaliana.New Phytol. 2020; 227: 1157-1173https://doi.org/10.1111/nph.16599Crossref PubMed Scopus (20) Google Scholar,15Lavenus J. Goh T. Roberts I. Guyomarc'h S. Lucas M. De Smet I. Fukaki H. Beeckman T. Bennett M. Laplaze L. Lateral root development in Arabidopsis: fifty shades of auxin.Trends Plant Sci. 2013; 18: 450-458https://doi.org/10.1016/j.tplants.2013.04.006Abstract Full Text Full Text PDF PubMed Scopus (446) Google Scholar Recent studies have found that ARF7 and ARF19 form complexes with other factors to regulate LR formation.12Chen Q. Liu Y. Maere S. Lee E. Van Isterdael G. Xie Z. Xuan W. Lucas J. Vassileva V. Kitakura S. et al.A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development.Nat. Commun. 2015; 6: 8821https://doi.org/10.1038/ncomms9821Crossref PubMed Scopus (63) Google Scholar,16Uehara T. Okushima Y. Mimura T. Tasaka M. Fukaki H. Domain II mutations in CRANE/IAA18 suppress lateral root formation and affect shoot development in Arabidopsis thaliana.Plant Cell Physiol. 2008; 49: 1025-1038https://doi.org/10.1093/pcp/pcn079Crossref PubMed Scopus (101) Google Scholar,17Ito J. Fukaki H. Onoda M. Li L. Li C. Tasaka M. Furutani M. Auxin-dependent compositional change in mediator in ARF7- and ARF19-mediated transcription.Proc. Natl. Acad. Sci. USA. 2016; 113: 6562-6567https://doi.org/10.1073/pnas.1600739113Crossref PubMed Scopus (70) Google Scholar SOLITARY ROOT/IAA14 physically interacts with ARF7 and ARF19 and inhibits LR initiation by suppressing the transcriptional activities of ARF7 and ARF19 in the pericycle.12Chen Q. Liu Y. Maere S. Lee E. Van Isterdael G. Xie Z. Xuan W. Lucas J. Vassileva V. Kitakura S. et al.A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development.Nat. Commun. 2015; 6: 8821https://doi.org/10.1038/ncomms9821Crossref PubMed Scopus (63) Google Scholar,16Uehara T. Okushima Y. Mimura T. Tasaka M. Fukaki H. Domain II mutations in CRANE/IAA18 suppress lateral root formation and affect shoot development in Arabidopsis thaliana.Plant Cell Physiol. 2008; 49: 1025-1038https://doi.org/10.1093/pcp/pcn079Crossref PubMed Scopus (101) Google Scholar IAA14 inhibits RNA polymerase II progression at the genes regulated by ARF7 and ARF19 by forming a complex with the CDK8 kinase module (CKM) of Mediator.17Ito J. Fukaki H. Onoda M. Li L. Li C. Tasaka M. Furutani M. Auxin-dependent compositional change in mediator in ARF7- and ARF19-mediated transcription.Proc. Natl. Acad. Sci. USA. 2016; 113: 6562-6567https://doi.org/10.1073/pnas.1600739113Crossref PubMed Scopus (70) Google Scholar PHYB also forms a complex with ARF7, ARF19, and IAA14, which increases the stability of IAA14, suppressing the function of ARF7 and ARF19 in activating genes involved in adventitious root formation.18Li Q.Q. Zhang Z. Wang Y.L. Zhong L.Y. Chao Z.F. Gao Y.Q. Han M.L. Xu L. Chao D.Y. Phytochrome B inhibits darkness-induced hypocotyl adventitious root formation by stabilizing IAA14 and suppressing ARF7 and ARF19.Plant J. 2021; 105: 1689-1702https://doi.org/10.1111/tpj.15142Crossref PubMed Scopus (11) Google Scholar Like IAA14, the other two important IAA proteins, IAA15 and CRANE/IAA18, associate with ARF7 and ARF19 and negatively regulate LR formation by suppressing ARF7 and ARF19 activities.19Kim S.H. Bahk S. An J. Hussain S. Nguyen N.T. Do H.L. Kim J.Y. Hong J.C. Chung W.S. A gain-of-function mutant of IAA15 inhibits lateral root development by transcriptional repression of LBD genes in Arabidopsis.Front. Plant Sci. 2020; 11: 1239https://doi.org/10.3389/fpls.2020.01239Crossref PubMed Scopus (12) Google Scholar,20Bustillo-Avendaño E. Ibáñez S. Sanz O. Sousa Barros J.A. Gude I. Perianez-Rodriguez J. Micol J.L. Del Pozo J.C. Moreno-Risueno M.A. Pérez-Pérez J.M. Regulation of hormonal control, cell reprogramming, and patterning during de novo root organogenesis.Plant Physiol. 2018; 176: 1709-1727https://doi.org/10.1104/pp.17.00980Crossref PubMed Scopus (67) Google Scholar,21Ploense S.E. Wu M.F. Nagpal P. Reed J.W. A gain-of-function mutation in IAA18 alters Arabidopsis embryonic apical patterning.Development. 2009; 136: 1509-1517https://doi.org/10.1242/dev.025932Crossref PubMed Scopus (66) Google Scholar,22Hong L. Ye C. Lin J. Fu H. Wu X. Li Q.Q. Alternative polyadenylation is involved in auxin-based plant growth and development.Plant J. 2018; 93: 246-258https://doi.org/10.1111/tpj.13771Crossref PubMed Scopus (28) Google Scholar Recent studies have also identified a series of important genes that are regulated by ARF7 and ARF19 to affect LR formation.12Chen Q. Liu Y. Maere S. Lee E. Van Isterdael G. Xie Z. Xuan W. Lucas J. Vassileva V. Kitakura S. et al.A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development.Nat. Commun. 2015; 6: 8821https://doi.org/10.1038/ncomms9821Crossref PubMed Scopus (63) Google Scholar,23Lee H.W. Kang N.Y. Pandey S.K. Cho C. Lee S.H. Kim J. Dimerization in LBD16 and LBD18 transcription factors is critical for lateral root formation.Plant Physiol. 2017; 174: 301-311https://doi.org/10.1104/pp.17.00013Crossref PubMed Scopus (23) Google Scholar,24Huang K.L. Ma G.J. Zhang M.L. Xiong H. Wu H. Zhao C.Z. Liu C.S. Jia H.X. Chen L. Kjorven J.O. et al.The ARF7 and ARF19 transcription factors positively regulate PHOSPHATE STARVATION RESPONSE1 in Arabidopsis roots.Plant Physiol. 2018; 178: 413-427https://doi.org/10.1104/pp.17.01713Crossref PubMed Scopus (74) Google Scholar,25Wang X. Yu R. Wang J. Lin Z. Han X. Deng Z. Fan L. He H. Deng X.W. Chen H. The asymmetric expression of SAUR genes mediated by ARF7/19 promotes the gravitropism and phototropism of plant hypocotyls.Cell Rep. 2020; 31: 107529https://doi.org/10.1016/j.celrep.2020.107529Abstract Full Text Full Text PDF PubMed Scopus (24) Google Scholar For example, LATERAL ORGAN BOUNDARY DOMAIN16/ASYMMETRIC LEAVES2-LIKE18 (LBD16/ASL18), LBD18/ASL20, and LBD29/ASL16 are key auxin-inducible regulators that are expressed in the pericycle and act directly downstream of ARF7 and ARF19 during LR formation.26Porco S. Larrieu A. Du Y. Gaudinier A. Goh T. Swarup K. Swarup R. Kuempers B. Bishopp A. Lavenus J. et al.Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3.Development. 2016; 143: 3340-3349https://doi.org/10.1242/dev.136283Crossref PubMed Scopus (91) Google Scholar,27Goh T. Toyokura K. Yamaguchi N. Okamoto Y. Uehara T. Kaneko S. Takebayashi Y. Kasahara H. Ikeyama Y. Okushima Y. et al.Lateral root initiation requires the sequential induction of transcription factors LBD16 and PUCHI in Arabidopsis thaliana.New Phytol. 2019; 224: 749-760https://doi.org/10.1111/nph.16065Crossref PubMed Scopus (35) Google Scholar The defective LR phenotype of arf7-1arf19-1 can be partially complemented by overexpressing LBD16, LBD18, or LBD29.28Okushima Y. Fukaki H. Onoda M. Theologis A. Tasaka M. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis.Plant Cell. 2007; 19: 118-130https://doi.org/10.1105/tpc.106.047761Crossref PubMed Scopus (707) Google Scholar,29Lee H.W. Kim N.Y. Lee D.J. Kim J. LBD18/ASL20 regulates lateral root formation in combination with LBD16/ASL18 downstream of ARF7 and ARF19 in Arabidopsis.Plant Physiol. 2009; 151: 1377-1389https://doi.org/10.1104/pp.109.143685Crossref PubMed Scopus (228) Google Scholar,30Goh T. Joi S. Mimura T. Fukaki H. The establishment of asymmetry in Arabidopsis lateral root founder cells is regulated by LBD16/ASL18 and related LBD/ASL proteins.Development. 2012; 139: 883-893https://doi.org/10.1242/dev.071928Crossref PubMed Scopus (212) Google Scholar Besides the pericycle, recent studies have uncovered that the endodermis is also involved in regulating LR initiation.31Marhavý P. Montesinos J.C. Abuzeineh A. Van Damme D. Vermeer J.E.M. Duclercq J. Rakusová H. Nováková P. Friml J. Geldner N. Benková E. Targeted cell elimination reveals an auxin-guided biphasic mode of lateral root initiation.Genes Dev. 2016; 30: 471-483https://doi.org/10.1101/gad.276964.115Crossref PubMed Scopus (65) Google Scholar,32Vermeer J.E.M. von Wangenheim D. Barberon M. Lee Y. Stelzer E.H.K. Maizel A. Geldner N. A spatial accommodation by neighboring cells is required for organ initiation in Arabidopsis.Science. 2014; 343: 178-183https://doi.org/10.1126/science.1245871Crossref PubMed Scopus (199) Google Scholar,33Torres-Martínez H.H. Napsucialy-Mendivil S. Dubrovsky J.G. Cellular and molecular bases of lateral root initiation and morphogenesis.Curr. Opin. Plant Biol. 2022; 65: 102115https://doi.org/10.1016/j.pbi.2021.102115Crossref PubMed Scopus (8) Google Scholar Because of the existence of a casparian strip network and other cell wall constraints, division and expansion of pericycle cells are strictly controlled by the endodermis.3Ötvös K. Benková E. Spatiotemporal mechanisms of root branching.Curr. Opin. Genet. Dev. 2017; 45: 82-89https://doi.org/10.1016/j.gde.2017.03.010Crossref PubMed Scopus (10) Google Scholar,34Ou Y. Kui H. Li J. Receptor-like kinases in root development: current progress and future directions.Mol. Plant. 2021; 14: 166-185https://doi.org/10.1016/j.molp.2020.12.004Abstract Full Text Full Text PDF PubMed Scopus (14) Google Scholar,35Majda M. Robert S. The role of auxin in cell wall expansion.Int. J. Mol. Sci. 2018; 19: 951https://doi.org/10.3390/ijms19040951Crossref PubMed Scopus (194) Google Scholar,36Lehman T.A. Smertenko A. Sanguinet K.A. Auxin, microtubules, and vesicle trafficking: conspirators behind the cell wall.J. Exp. Bot. 2017; 68: 3321-3329https://doi.org/10.1093/jxb/erx205Crossref PubMed Scopus (25) Google Scholar Elimination of endodermal cells activates pericycle cells to re-enter the cell cycle and promotes LR initiation.31Marhavý P. Montesinos J.C. Abuzeineh A. Van Damme D. Vermeer J.E.M. Duclercq J. Rakusová H. Nováková P. Friml J. Geldner N. Benková E. Targeted cell elimination reveals an auxin-guided biphasic mode of lateral root initiation.Genes Dev. 2016; 30: 471-483https://doi.org/10.1101/gad.276964.115Crossref PubMed Scopus (65) Google Scholar In particular, auxin activates transcription of Gly-Asp-Ser-Leu (GDSL) lipases for suberin synthesis and degradation in the endodermis, which facilitates LRs to pass through the endodermis.37Ursache R. De Jesus Vieira Teixeira C. Dénervaud Tendon V. Gully K. De Bellis D. Schmid-Siegert E. Grube Andersen T. Shekhar V. Calderon S. Pradervand S. et al.GDSL-domain proteins have key roles in suberin polymerization and degradation.Nat. Plants. 2021; 7: 353-364https://doi.org/10.1038/s41477-021-00862-9Crossref PubMed Scopus (53) Google Scholar SHORT HYPOCOTYL 2 (SHY2)/IAA3, a member of the auxin-induced Aux/IAA gene family, is known to be specifically expressed in endodermal cells, and its gain-of-function CASP1pro::shy2-2 completely blocks LR initiation because of dramatically suppressed auxin signaling in the endodermis.32Vermeer J.E.M. von Wangenheim D. Barberon M. Lee Y. Stelzer E.H.K. Maizel A. Geldner N. A spatial accommodation by neighboring cells is required for organ initiation in Arabidopsis.Science. 2014; 343: 178-183https://doi.org/10.1126/science.1245871Crossref PubMed Scopus (199) Google Scholar,38Swarup K. Benková E. Swarup R. Casimiro I. Péret B. Yang Y. Parry G. Nielsen E. De Smet I. Vanneste S. et al.The auxin influx carrier LAX3 promotes lateral root emergence.Nat. Cell Biol. 2008; 10: 946-954https://doi.org/10.1038/ncb1754Crossref PubMed Scopus (588) Google Scholar By contrast, the loss-of-function shy2-31 mutant shows enhanced auxin signaling in the endodermis and accelerated LR emergence.7Goh T. Kasahara H. Mimura T. Kamiya Y. Fukaki H. Multiple AUX/IAA-ARF modules regulate lateral root formation: the role of Arabidopsis SHY2/IAA3-mediated auxin signalling.Philos. Trans. R. Soc. Lond. B Biol. Sci. 2012; 367: 1461-1468https://doi.org/10.1098/rstb.2011.0232Crossref PubMed Scopus (144) Google Scholar,38Swarup K. Benková E. Swarup R. Casimiro I. Péret B. Yang Y. Parry G. Nielsen E. De Smet I. Vanneste S. et al.The auxin influx carrier LAX3 promotes lateral root emergence.Nat. Cell Biol. 2008; 10: 946-954https://doi.org/10.1038/ncb1754Crossref PubMed Scopus (588) Google Scholar Because SHY2 is a major repressor of auxin signaling in endodermal cells, the endodermis likely modulates expansion and division of pericycle cells in a SHY2-dependent manner.39Vermeer J.E.M. Geldner N. Lateral root initiation in Arabidopsis thaliana: a force awakens.F1000prime Rep. 2015; 7: 32https://doi.org/10.12703/P7-32Crossref PubMed Scopus (31) Google Scholar Despite these studies, how pericyclic and endodermal cell layers are coordinately regulated to maintain LR initiation is mostly unclear. We have found previously that UBIQUITIN-SPECIFIC PROTEASE14/DA3 is involved in regulation of cell cycle and organ growth in Arabidopsis.40Xu Y. Jin W. Li N. Zhang W. Liu C. Li C. Li Y. UBIQUITIN-SPECIFIC PROTEASE14 interacts with ULTRAVIOLET-B INSENSITIVE4 to regulate endoreduplication and cell and organ growth in Arabidopsis.Plant Cell. 2016; 28: 1200-1214https://doi.org/10.1105/tpc.16.00007Crossref PubMed Scopus (30) Google Scholar Given that several cell cycle genes are also involved in LR initiation,41Berckmans B. Vassileva V. Schmid S.P.C. Maes S. Parizot B. Naramoto S. Magyar Z. Alvim Kamei C.L. Koncz C. Bögre L. et al.Auxin-dependent cell cycle reactivation through transcriptional regulation of Arabidopsis E2Fa by lateral organ boundary proteins.Plant Cell. 2011; 23: 3671-3683https://doi.org/10.1105/tpc.111.088377Crossref PubMed Scopus (152) Google Scholar,42Himanen K. Boucheron E. Vanneste S. de Almeida Engler J. Inzé D. Beeckman T. Auxin-mediated cell cycle activation during early lateral root initiation.Plant Cell. 2002; 14: 2339-2351https://doi.org/10.1105/tpc.004960Crossref PubMed Scopus (462) Google Scholar,43Nieuwland J. Maughan S. Dewitte W. Scofield S. Sanz L. Murray J.A.H. The D-type cyclin CYCD4;1 modulates lateral root density in Arabidopsis by affecting the basal meristem region.Proc. Natl. Acad. Sci. USA. 2009; 106: 22528-22533https://doi.org/10.1073/pnas.0906354106Crossref PubMed Scopus (57) Google Scholar we investigated whether DA3 affects LR initiation. Here we report that the da3-1 mutation increases LR initiation but represses LR emergence with perturbed auxin accumulation. In pericyclic cells, DA3 negatively regulates accumulation of ARF7 and ARF19, whereas in endodermal cells, DA3 physically interacts with SHY2 and modulates its stability. Further analysis reveals that DA3 and SHY2 are associated with ARF7 and ARF19 to modulate their protein levels and their binding to the LBD16 locus, affecting LBD16 expression and suppressing LR initiation. Our findings provide a so far unknown molecular framework where LR formation is coordinately regulated by DA3 and its interacting proteins in the pericycle and endodermis. In our previous study, we found that DA3 modulated the cell cycle and slightly affected root length40Xu Y. Jin W. Li N. Zhang W. Liu C. Li C. Li Y. UBIQUITIN-SPECIFIC PROTEASE14 interacts with ULTRAVIOLET-B INSENSITIVE4 to regulate endoreduplication and cell and organ growth in Arabidopsis.Plant Cell. 2016; 28: 1200-1214https://doi.org/10.1105/tpc.16.00007Crossref PubMed Scopus (30) Google Scholar (Figures 1A and 1B ). Given that several cell cycle genes have been reported to be involved in LR formation,41Berckmans B. Vassileva V. Schmid S.P.C. Maes S. Parizot B. Naramoto S. Magyar Z. Alvim Kamei C.L. Koncz C. Bögre L. et al.Auxin-dependent cell cycle reactivation through transcriptional regulation of Arabidopsis E2Fa by lateral organ boundary proteins.Plant Cell. 2011; 23: 3671-3683https://doi.org/10.1105/tpc.111.088377Crossref PubMed Scopus (152) Google Scholar,42Himanen K. Boucheron E. Vanneste S. de Almeida Engler J. Inzé D. Beeckman T. Auxin-mediated cell cycle activation during early lateral root initiation.Plant Cell. 2002; 14: 2339-2351https://doi.org/10.1105/tpc.004960Crossref PubMed Scopus (462) Google Scholar,43Nieuwland J. Maughan S. Dewitte W. Scofield S. Sanz L. Murray J.A.H. The D-type cyclin CYCD4;1 modulates lateral root density in Arabidopsis by affecting the basal meristem region.Proc. Natl. Acad. Sci. USA. 2009; 106: 22528-22533https://doi.org/10.1073/pnas.0906354106Crossref PubMed Scopus (57) Google Scholar we proceeded to examine whether DA3 was also involved in regulation of LR formation, and found that the density of emerged LRs was significantly reduced in the da3-1 loss-of-function mutants40Xu Y. Jin W. Li N. Zhang W. Liu C. Li C. Li Y. UBIQUITIN-SPECIFIC PROTEASE14 interacts with ULTRAVIOLET-B INSENSITIVE4 to regulate endoreduplication and cell and organ growth in Arabidopsis.Plant Cell. 2016; 28: 1200-1214https://doi.org/10.1105/tpc.16.00007Crossref PubMed Scopus (30) Google Scholar compared with wild-type (WT; Col-0) plants (Figures 1A and 1C), indicating that the da3-1 mutation severely disrupts LR emergence. Because the decrease in LR emergence could result from inhibition of LR initiation or suppression of LR emergence,12Chen Q. Liu Y. Maere S. Lee E. Van Isterdael G. Xie Z. Xuan W. Lucas J. Vassileva V. Kitakura S. et al.A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development.Nat. Commun. 2015; 6: 8821https://doi.org/10.1038/ncomms9821Crossref PubMed Scopus (63) Google Scholar,38Swarup K. Benková E. Swarup R. Casimiro I. Péret B. Yang Y. Parry G. Nielsen E. De Smet I. Vanneste S. et al.The auxin influx carrier LAX3 promotes lateral root emergence.Nat. Cell Biol. 2008; 10: 946-954https://doi.org/10.1038/ncb1754Crossref PubMed Scopus (588) Google Scholar we characterized the developmental stages of LRPs in WT and da3-1 plants based on the previously defined eight stages during the developmental progression of LRs.44Malamy J.E. Benfey P.N. Organization and cell differentiation in lateral roots of Arabidopsis thaliana.Development. 1997; 124: 33-44https://doi.org/10.1242/dev.124.1.33Crossref PubMed Google Scholar The densities of LRPs at stages I and II were significantly higher in da3-1 than in WT plants, whereas their densities were comparable at subsequent stages (Figure 1D), implying that a reduction of emerged LRs in da3-1 could result from suppression of LR emergence rather than inhibition of LRP formation. These observations indicate that increased LR initiation and reduced LR emergence could contribute to increased accumulation of early-stage LRPs in da3-1 (Figures 1C and 1D). Because expression of pPLT7:TNI-amiR or pPLT7:TNIintron in transgenic plants led to downregulation of DA3 or disruption of DA3 function in LRPs, respectively,45Majumdar P. Karidas P. Siddiqi I. Nath U. The ubiquitin-specific protease TNI/UBP14 functions in ubiquitin recycling and affects auxin response.Plant Physiol. 2020; 184: 1499-1513https://doi.org/10.1104/pp.20.00689Crossref PubMed Scopus (5) Google Scholar we created the same constructs and the resulting transgenic lines where DA3 expression was downregulated in pPLT7:TNI-amiR (Figure S1A) or disrupting DA3 transcripts were produced in pPLT7:TNIintron (Figure S1B). Similarly, LR emergence was reduced in pPLT7:TNI-amiR or pPLT7:TNIintron plants, but accumulation of LRPs was obviously increased in these plants (Figures S1C–S1E), demonstrating that downregulation of DA3 and disruption of its function show similar phenotypes in LR development. The defective LR phenotype of da3-1 was rescued by the genomic construct gDA3 containing a 7.06-kb DA3 genomic fragment including the 1.72-kb upstream sequence and the entire coding region40Xu Y. Jin W. Li N. Zhang W. Liu C. Li C. Li Y. UBIQUITIN-SPECIFIC PROTEASE14 interacts with ULTRAVIOLET-B INSENSITIVE4 to regulate endoreduplication and cell and organ growth in Arabidopsis.Plant Cell. 2016; 28: 1200-1214https://doi.org/10.1105/tpc.16.00007Crossref PubMed Scopus (30) Google Scholar (Figures S1F–S1I). These observations support the hypothesis that DA3 affects LR development. We examined an established gDA3-GFP transgenic plant40Xu Y. Jin W. Li N. Zhang W. Liu C. Li C. Li Y. UBIQUITIN-SPECIFIC PROTEASE14 interacts with ULTRAVIOLET-B INSENSITIVE4 to regulate endoreduplication and cell and organ growth in Arabidopsis.Plant Cell. 2016; 28: 1200-1214https://doi.org/10.1105/tpc.16.00007Crossref PubMed Scopus (30) Google Scholar to analyze the expression pattern of DA3. The green fluorescent protein (GFP) signals were detectable in all root tissues, including the stele, endodermis, cortex, and epidermis, as well as different cell layers of developing LRs (Figure 1E). DA3-GFP signals were continuously detectable in LRPs from stage I to emergence of LRs (Figure 1E), which suggests that DA3 contributes to LR initiation and emergence via its expression in different root tissues. To test whether DA3 functions in mediating LR initiation via specific cell layers in roots, we examined LR phenotypes of da3-1 plants expressing DA3-GFP under the control of different cell-layer-specific promoters. The pericycle-expressed DA3-GFP under control of the GATA23 promoter partially rescued the defective LR phenotype of da3-1 (Figures S2A–S2D). Similarly, the endodermis-expressed DA3-GFP under control of the SCARECROW (SCR) promoter also partially rescued the da3-1 LR phenotype, although its complementary effect was weaker than that exhibited by the GATA23 promoter (Figures S2A–S2D). In contrast, the stele-expressed DA3-GFP driven by the CRE1 promoter failed to rescue the da3-1 LR phenotype (Figures S2A–S2D). We found that the DA3-GFP signal was barely expressed in pericycle cells versus other stele cells in pCRE1:DA3-GFP da3-1 roots (Figure S2A), suggesting that tissue-specific expression of DA3 in pericycle cells rather than other stele cells is important for DA3 function in LR initiation. These results substantiate that DA3 mainly functions in the pericycle and endodermis to regulate LR initiation, which is consistent with a previous study showing control of LR initiation by the pericycle and the neighboring endodermis.32Vermeer J.E.M. von Wangenheim D. Barberon M. Lee Y. Stelzer E.H.K. Maizel A. Geldner N. A spatial accommodation by neighboring cells is required for organ initiation in Arabidopsis.Science. 2014; 343: 178-183https://doi.org/10.1126/science.1245871Crossref PubMed Scopus (199) Google Scholar Because auxin is a central plant hormone for LR development and controls almost the whole proc" @default.
- W4313334553 created "2023-01-06" @default.
- W4313334553 creator A5015813083 @default.
- W4313334553 creator A5017377721 @default.
- W4313334553 creator A5031436437 @default.
- W4313334553 creator A5035568306 @default.
- W4313334553 creator A5036288146 @default.
- W4313334553 creator A5043879291 @default.
- W4313334553 creator A5048743761 @default.
- W4313334553 creator A5052578265 @default.
- W4313334553 creator A5086338661 @default.
- W4313334553 creator A5088286876 @default.
- W4313334553 creator A5089857691 @default.
- W4313334553 date "2023-01-01" @default.
- W4313334553 modified "2023-10-18" @default.
- W4313334553 title "Control of lateral root initiation by DA3 in Arabidopsis" @default.
- W4313334553 cites W1598433638 @default.
- W4313334553 cites W1915361971 @default.
- W4313334553 cites W1975755658 @default.
- W4313334553 cites W1994128536 @default.
- W4313334553 cites W2005007130 @default.
- W4313334553 cites W2007239787 @default.
- W4313334553 cites W2008642796 @default.
- W4313334553 cites W2009685353 @default.
- W4313334553 cites W2033527665 @default.
- W4313334553 cites W2034646929 @default.
- W4313334553 cites W2045228806 @default.
- W4313334553 cites W2047364563 @default.
- W4313334553 cites W2053826886 @default.
- W4313334553 cites W2096642037 @default.
- W4313334553 cites W2105215281 @default.
- W4313334553 cites W2105722863 @default.
- W4313334553 cites W2107272769 @default.
- W4313334553 cites W2112531653 @default.
- W4313334553 cites W2118301587 @default.
- W4313334553 cites W2118867617 @default.
- W4313334553 cites W2133835456 @default.
- W4313334553 cites W2137252144 @default.
- W4313334553 cites W2140173557 @default.
- W4313334553 cites W2144483666 @default.
- W4313334553 cites W2146526817 @default.
- W4313334553 cites W2150210208 @default.
- W4313334553 cites W2152506161 @default.
- W4313334553 cites W2161886055 @default.
- W4313334553 cites W2166188125 @default.
- W4313334553 cites W2204245756 @default.
- W4313334553 cites W2284588392 @default.
- W4313334553 cites W2403925542 @default.
- W4313334553 cites W2603551069 @default.
- W4313334553 cites W2605166124 @default.
- W4313334553 cites W2725374631 @default.
- W4313334553 cites W2737574547 @default.
- W4313334553 cites W2760052580 @default.
- W4313334553 cites W2769224587 @default.
- W4313334553 cites W2775567899 @default.
- W4313334553 cites W2789302950 @default.
- W4313334553 cites W2800800236 @default.
- W4313334553 cites W2884981975 @default.
- W4313334553 cites W2918453100 @default.
- W4313334553 cites W2920905624 @default.
- W4313334553 cites W2949973465 @default.
- W4313334553 cites W2958190278 @default.
- W4313334553 cites W2967430824 @default.
- W4313334553 cites W3004904437 @default.
- W4313334553 cites W3016156828 @default.
- W4313334553 cites W3048605534 @default.
- W4313334553 cites W3081575208 @default.
- W4313334553 cites W3104858763 @default.
- W4313334553 cites W3113119239 @default.
- W4313334553 cites W3116528811 @default.
- W4313334553 cites W3134504913 @default.
- W4313334553 cites W3203374530 @default.
- W4313334553 cites W3214226680 @default.
- W4313334553 doi "https://doi.org/10.1016/j.celrep.2022.111913" @default.
- W4313334553 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36640335" @default.
- W4313334553 hasPublicationYear "2023" @default.
- W4313334553 type Work @default.
- W4313334553 citedByCount "2" @default.
- W4313334553 countsByYear W43133345532023 @default.
- W4313334553 crossrefType "journal-article" @default.
- W4313334553 hasAuthorship W4313334553A5015813083 @default.
- W4313334553 hasAuthorship W4313334553A5017377721 @default.
- W4313334553 hasAuthorship W4313334553A5031436437 @default.
- W4313334553 hasAuthorship W4313334553A5035568306 @default.
- W4313334553 hasAuthorship W4313334553A5036288146 @default.
- W4313334553 hasAuthorship W4313334553A5043879291 @default.
- W4313334553 hasAuthorship W4313334553A5048743761 @default.
- W4313334553 hasAuthorship W4313334553A5052578265 @default.
- W4313334553 hasAuthorship W4313334553A5086338661 @default.
- W4313334553 hasAuthorship W4313334553A5088286876 @default.
- W4313334553 hasAuthorship W4313334553A5089857691 @default.
- W4313334553 hasBestOaLocation W43133345531 @default.
- W4313334553 hasConcept C104317684 @default.
- W4313334553 hasConcept C138885662 @default.
- W4313334553 hasConcept C143065580 @default.
- W4313334553 hasConcept C171078966 @default.
- W4313334553 hasConcept C2779491563 @default.
- W4313334553 hasConcept C41895202 @default.