Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313338917> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4313338917 abstract "The portion of cooling power reaches up to one third of total power budget in the operation of data centers. Recently researchers pay more attention on thermal management for improving energy efficiency in the data centers as well as the servers. To the best of existing literatures, the complex interactions of cooling and heating resources is the main problem encountered in the design of server fan control. Moreover, to achieve better control performance, the thermal information of time series should be taken into account as well. Therefore, this work proposes time series prediction of server temperatures by utilizing two multivariate time series prediction models, named MTSMFF and MsA. An automatic data acquisition system has been designed for collecting massive scale dataset. To ensure the robustness of trained results, the dataset is divided into training data and validation data. These two models are trained with the training data, and MsA provides the best performance in accuracy with the validation data. The experimental results show that the time series prediction of MsA performs splendidly for the trend of the server temperatures." @default.
- W4313338917 created "2023-01-06" @default.
- W4313338917 creator A5030714502 @default.
- W4313338917 creator A5033895967 @default.
- W4313338917 creator A5058401340 @default.
- W4313338917 creator A5073419899 @default.
- W4313338917 date "2022-11-18" @default.
- W4313338917 modified "2023-09-23" @default.
- W4313338917 title "Time series prediction for thermal management in server applied with deep learning" @default.
- W4313338917 cites W2045274643 @default.
- W4313338917 cites W2064675550 @default.
- W4313338917 cites W2131774270 @default.
- W4313338917 cites W2157331557 @default.
- W4313338917 cites W2327388626 @default.
- W4313338917 cites W2785897209 @default.
- W4313338917 cites W2808535700 @default.
- W4313338917 cites W2977251608 @default.
- W4313338917 cites W2993122943 @default.
- W4313338917 cites W3000499162 @default.
- W4313338917 cites W3136117146 @default.
- W4313338917 cites W4249666793 @default.
- W4313338917 doi "https://doi.org/10.1109/icmt56556.2022.9997645" @default.
- W4313338917 hasPublicationYear "2022" @default.
- W4313338917 type Work @default.
- W4313338917 citedByCount "0" @default.
- W4313338917 crossrefType "proceedings-article" @default.
- W4313338917 hasAuthorship W4313338917A5030714502 @default.
- W4313338917 hasAuthorship W4313338917A5033895967 @default.
- W4313338917 hasAuthorship W4313338917A5058401340 @default.
- W4313338917 hasAuthorship W4313338917A5073419899 @default.
- W4313338917 hasConcept C104317684 @default.
- W4313338917 hasConcept C111919701 @default.
- W4313338917 hasConcept C119857082 @default.
- W4313338917 hasConcept C124101348 @default.
- W4313338917 hasConcept C143724316 @default.
- W4313338917 hasConcept C151406439 @default.
- W4313338917 hasConcept C151730666 @default.
- W4313338917 hasConcept C154945302 @default.
- W4313338917 hasConcept C161584116 @default.
- W4313338917 hasConcept C185592680 @default.
- W4313338917 hasConcept C41008148 @default.
- W4313338917 hasConcept C45804977 @default.
- W4313338917 hasConcept C55493867 @default.
- W4313338917 hasConcept C63479239 @default.
- W4313338917 hasConcept C67186912 @default.
- W4313338917 hasConcept C77088390 @default.
- W4313338917 hasConcept C86803240 @default.
- W4313338917 hasConcept C93996380 @default.
- W4313338917 hasConceptScore W4313338917C104317684 @default.
- W4313338917 hasConceptScore W4313338917C111919701 @default.
- W4313338917 hasConceptScore W4313338917C119857082 @default.
- W4313338917 hasConceptScore W4313338917C124101348 @default.
- W4313338917 hasConceptScore W4313338917C143724316 @default.
- W4313338917 hasConceptScore W4313338917C151406439 @default.
- W4313338917 hasConceptScore W4313338917C151730666 @default.
- W4313338917 hasConceptScore W4313338917C154945302 @default.
- W4313338917 hasConceptScore W4313338917C161584116 @default.
- W4313338917 hasConceptScore W4313338917C185592680 @default.
- W4313338917 hasConceptScore W4313338917C41008148 @default.
- W4313338917 hasConceptScore W4313338917C45804977 @default.
- W4313338917 hasConceptScore W4313338917C55493867 @default.
- W4313338917 hasConceptScore W4313338917C63479239 @default.
- W4313338917 hasConceptScore W4313338917C67186912 @default.
- W4313338917 hasConceptScore W4313338917C77088390 @default.
- W4313338917 hasConceptScore W4313338917C86803240 @default.
- W4313338917 hasConceptScore W4313338917C93996380 @default.
- W4313338917 hasLocation W43133389171 @default.
- W4313338917 hasOpenAccess W4313338917 @default.
- W4313338917 hasPrimaryLocation W43133389171 @default.
- W4313338917 hasRelatedWork W189280425 @default.
- W4313338917 hasRelatedWork W2061542064 @default.
- W4313338917 hasRelatedWork W2064674714 @default.
- W4313338917 hasRelatedWork W2349707730 @default.
- W4313338917 hasRelatedWork W2350758509 @default.
- W4313338917 hasRelatedWork W2375884488 @default.
- W4313338917 hasRelatedWork W2752018578 @default.
- W4313338917 hasRelatedWork W2776931564 @default.
- W4313338917 hasRelatedWork W4285420330 @default.
- W4313338917 hasRelatedWork W4309045103 @default.
- W4313338917 isParatext "false" @default.
- W4313338917 isRetracted "false" @default.
- W4313338917 workType "article" @default.