Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313338966> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4313338966 abstract "The world is surrounded by a huge amount of data increasing day by day. The increase of data leads to the presence of high-dimensional data causing a challenge in data mining as it becomes costly in computation time and memory space. Moreover, high-dimensional data can affect the classification accuracy of machine learning algorithms because of the existence of redundant and irrelevant features, and that can cause the Curse of Dimensionality problem. Therefore, Dimensionality Reduction has been introduced to solve the Curse of Dimensionality problem by feature extraction techniques. Since there is a lack in the performance of some machine learning models because of high-dimensional data, this paper introduces two common dimensionality reduction methods, and conducts an empirical comparison between , Principal Component Analysis (PCA) and Auto-Encoders (AE) to study their effect in improving the performance of classification in high-dimensional data. The study uses three classification models, K-Nearest Neighbour(KNN),Support Vector Machine (SVM), and Random Forest (RF) to perform the classification in the MNIST, and Fashion-MNIST datasets. The results have been compared , analyzed, and show that AE has a better effect on improving performance of KNN, and SVM classifiers on MNIST dataset, as the SVM accuracy is improved from 94% to 97% when the AE used to reduce dimension with a percentage of 95%,90%, and 50%.Moreover, KNN accuracy has been improved by AE from 91% to 95% , when dimension is reduced with a percentage of 95%,90%, and 50%.On the other hand, the accuracy of the same classifier has been improved in Fashion-MNIST dataset from 81% to 83%, when dimension is reduced by AE with a percentage of 90% and 50%." @default.
- W4313338966 created "2023-01-06" @default.
- W4313338966 creator A5006211488 @default.
- W4313338966 creator A5061367320 @default.
- W4313338966 creator A5067542163 @default.
- W4313338966 date "2022-11-20" @default.
- W4313338966 modified "2023-10-16" @default.
- W4313338966 title "Dimension Reduction Techniques for Image Classification" @default.
- W4313338966 cites W2066971104 @default.
- W4313338966 cites W2749849259 @default.
- W4313338966 cites W2804124655 @default.
- W4313338966 cites W2942062130 @default.
- W4313338966 cites W2956569383 @default.
- W4313338966 cites W2962239755 @default.
- W4313338966 cites W2988013144 @default.
- W4313338966 cites W2988016651 @default.
- W4313338966 cites W2998376027 @default.
- W4313338966 cites W3011464861 @default.
- W4313338966 cites W3024333932 @default.
- W4313338966 cites W3039222472 @default.
- W4313338966 cites W3114417845 @default.
- W4313338966 cites W3133688243 @default.
- W4313338966 cites W3135624290 @default.
- W4313338966 cites W3137091086 @default.
- W4313338966 cites W3194669929 @default.
- W4313338966 cites W3197910789 @default.
- W4313338966 doi "https://doi.org/10.1109/3ict56508.2022.9990707" @default.
- W4313338966 hasPublicationYear "2022" @default.
- W4313338966 type Work @default.
- W4313338966 citedByCount "0" @default.
- W4313338966 crossrefType "proceedings-article" @default.
- W4313338966 hasAuthorship W4313338966A5006211488 @default.
- W4313338966 hasAuthorship W4313338966A5061367320 @default.
- W4313338966 hasAuthorship W4313338966A5067542163 @default.
- W4313338966 hasConcept C108583219 @default.
- W4313338966 hasConcept C111030470 @default.
- W4313338966 hasConcept C119857082 @default.
- W4313338966 hasConcept C12267149 @default.
- W4313338966 hasConcept C153180895 @default.
- W4313338966 hasConcept C154945302 @default.
- W4313338966 hasConcept C169258074 @default.
- W4313338966 hasConcept C184509293 @default.
- W4313338966 hasConcept C190502265 @default.
- W4313338966 hasConcept C202444582 @default.
- W4313338966 hasConcept C27438332 @default.
- W4313338966 hasConcept C2777036070 @default.
- W4313338966 hasConcept C30732413 @default.
- W4313338966 hasConcept C33676613 @default.
- W4313338966 hasConcept C33923547 @default.
- W4313338966 hasConcept C41008148 @default.
- W4313338966 hasConcept C52622490 @default.
- W4313338966 hasConcept C70518039 @default.
- W4313338966 hasConcept C73555534 @default.
- W4313338966 hasConcept C83665646 @default.
- W4313338966 hasConceptScore W4313338966C108583219 @default.
- W4313338966 hasConceptScore W4313338966C111030470 @default.
- W4313338966 hasConceptScore W4313338966C119857082 @default.
- W4313338966 hasConceptScore W4313338966C12267149 @default.
- W4313338966 hasConceptScore W4313338966C153180895 @default.
- W4313338966 hasConceptScore W4313338966C154945302 @default.
- W4313338966 hasConceptScore W4313338966C169258074 @default.
- W4313338966 hasConceptScore W4313338966C184509293 @default.
- W4313338966 hasConceptScore W4313338966C190502265 @default.
- W4313338966 hasConceptScore W4313338966C202444582 @default.
- W4313338966 hasConceptScore W4313338966C27438332 @default.
- W4313338966 hasConceptScore W4313338966C2777036070 @default.
- W4313338966 hasConceptScore W4313338966C30732413 @default.
- W4313338966 hasConceptScore W4313338966C33676613 @default.
- W4313338966 hasConceptScore W4313338966C33923547 @default.
- W4313338966 hasConceptScore W4313338966C41008148 @default.
- W4313338966 hasConceptScore W4313338966C52622490 @default.
- W4313338966 hasConceptScore W4313338966C70518039 @default.
- W4313338966 hasConceptScore W4313338966C73555534 @default.
- W4313338966 hasConceptScore W4313338966C83665646 @default.
- W4313338966 hasLocation W43133389661 @default.
- W4313338966 hasOpenAccess W4313338966 @default.
- W4313338966 hasPrimaryLocation W43133389661 @default.
- W4313338966 hasRelatedWork W2091080939 @default.
- W4313338966 hasRelatedWork W2105055468 @default.
- W4313338966 hasRelatedWork W2150085486 @default.
- W4313338966 hasRelatedWork W2158704926 @default.
- W4313338966 hasRelatedWork W2169954946 @default.
- W4313338966 hasRelatedWork W2373052636 @default.
- W4313338966 hasRelatedWork W3015962327 @default.
- W4313338966 hasRelatedWork W3110687914 @default.
- W4313338966 hasRelatedWork W4220663171 @default.
- W4313338966 hasRelatedWork W4313338966 @default.
- W4313338966 isParatext "false" @default.
- W4313338966 isRetracted "false" @default.
- W4313338966 workType "article" @default.