Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313338974> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4313338974 abstract "Reducing the size and the computational need of a Convolutional Neural Network (CNN) is a crucial task that can be extremely important for the deployment phase of such models. In this work, we are quoting the most efficient techniques in order to reduce the size of CNNs while maintaining prediction accuracy. Through a case study, we investigate the effects, especially of the dense layers and how the number of nodes in each layer can change the weight, performance and training process of a CNN. Although there are lots of works around this subject, in our paper we are proving how and why the number of nodes in fully connected (dense) layers is the most important factor for reducing the size of a CNN." @default.
- W4313338974 created "2023-01-06" @default.
- W4313338974 creator A5014893289 @default.
- W4313338974 creator A5027914733 @default.
- W4313338974 creator A5032725664 @default.
- W4313338974 creator A5077293147 @default.
- W4313338974 date "2022-11-20" @default.
- W4313338974 modified "2023-09-28" @default.
- W4313338974 title "The Effects of Fully Connected Layers Adjustment for Lightweight Convolutional Neural Networks" @default.
- W4313338974 cites W2724616073 @default.
- W4313338974 cites W2769502706 @default.
- W4313338974 cites W2860338957 @default.
- W4313338974 cites W2884367402 @default.
- W4313338974 cites W2895432151 @default.
- W4313338974 cites W2897295818 @default.
- W4313338974 cites W2903650079 @default.
- W4313338974 cites W2950638713 @default.
- W4313338974 cites W2962851801 @default.
- W4313338974 cites W2962894046 @default.
- W4313338974 cites W2963125010 @default.
- W4313338974 cites W2963163009 @default.
- W4313338974 cites W2963363373 @default.
- W4313338974 cites W2963728985 @default.
- W4313338974 cites W2964217848 @default.
- W4313338974 cites W2964233199 @default.
- W4313338974 cites W2967975754 @default.
- W4313338974 cites W2980856918 @default.
- W4313338974 cites W3004543888 @default.
- W4313338974 cites W3093859587 @default.
- W4313338974 cites W3103203826 @default.
- W4313338974 cites W3123941068 @default.
- W4313338974 cites W3142844116 @default.
- W4313338974 cites W3190551878 @default.
- W4313338974 cites W3205343065 @default.
- W4313338974 cites W3207800905 @default.
- W4313338974 cites W4214951654 @default.
- W4313338974 cites W4231507133 @default.
- W4313338974 doi "https://doi.org/10.1109/3ict56508.2022.9990841" @default.
- W4313338974 hasPublicationYear "2022" @default.
- W4313338974 type Work @default.
- W4313338974 citedByCount "0" @default.
- W4313338974 crossrefType "proceedings-article" @default.
- W4313338974 hasAuthorship W4313338974A5014893289 @default.
- W4313338974 hasAuthorship W4313338974A5027914733 @default.
- W4313338974 hasAuthorship W4313338974A5032725664 @default.
- W4313338974 hasAuthorship W4313338974A5077293147 @default.
- W4313338974 hasConcept C105339364 @default.
- W4313338974 hasConcept C111919701 @default.
- W4313338974 hasConcept C120314980 @default.
- W4313338974 hasConcept C154945302 @default.
- W4313338974 hasConcept C162324750 @default.
- W4313338974 hasConcept C178790620 @default.
- W4313338974 hasConcept C185592680 @default.
- W4313338974 hasConcept C187736073 @default.
- W4313338974 hasConcept C2779227376 @default.
- W4313338974 hasConcept C2780451532 @default.
- W4313338974 hasConcept C41008148 @default.
- W4313338974 hasConcept C50644808 @default.
- W4313338974 hasConcept C81363708 @default.
- W4313338974 hasConcept C98045186 @default.
- W4313338974 hasConceptScore W4313338974C105339364 @default.
- W4313338974 hasConceptScore W4313338974C111919701 @default.
- W4313338974 hasConceptScore W4313338974C120314980 @default.
- W4313338974 hasConceptScore W4313338974C154945302 @default.
- W4313338974 hasConceptScore W4313338974C162324750 @default.
- W4313338974 hasConceptScore W4313338974C178790620 @default.
- W4313338974 hasConceptScore W4313338974C185592680 @default.
- W4313338974 hasConceptScore W4313338974C187736073 @default.
- W4313338974 hasConceptScore W4313338974C2779227376 @default.
- W4313338974 hasConceptScore W4313338974C2780451532 @default.
- W4313338974 hasConceptScore W4313338974C41008148 @default.
- W4313338974 hasConceptScore W4313338974C50644808 @default.
- W4313338974 hasConceptScore W4313338974C81363708 @default.
- W4313338974 hasConceptScore W4313338974C98045186 @default.
- W4313338974 hasLocation W43133389741 @default.
- W4313338974 hasOpenAccess W4313338974 @default.
- W4313338974 hasPrimaryLocation W43133389741 @default.
- W4313338974 hasRelatedWork W2015975239 @default.
- W4313338974 hasRelatedWork W2021850411 @default.
- W4313338974 hasRelatedWork W2096848550 @default.
- W4313338974 hasRelatedWork W2373964163 @default.
- W4313338974 hasRelatedWork W2748454020 @default.
- W4313338974 hasRelatedWork W2955938200 @default.
- W4313338974 hasRelatedWork W2963891724 @default.
- W4313338974 hasRelatedWork W2998526951 @default.
- W4313338974 hasRelatedWork W3119610945 @default.
- W4313338974 hasRelatedWork W3181746755 @default.
- W4313338974 isParatext "false" @default.
- W4313338974 isRetracted "false" @default.
- W4313338974 workType "article" @default.