Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313339020> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4313339020 abstract "Hand gesture recognition (HGR) is one of the main axes of the Human-Computer Interaction (HCI) research field. And computer vision is a very active dedicated research area. However, traditional vision-based methods, like using a fixed camera to record video sequences of sign language, have some serious drawbacks inherent to the fixed camera location, complex lighting conditions, and cluttered backgrounds. Motivated by these potential limitations, the present paper addresses the detection and classification of hand gestures based rather on wearable video monitoring data. A new feature extraction strategy based on five hand's partial occupancy areas in images is provided. And a deep learning formalism, using the Long Short-Term Memory (LSTM) algorithm, has been implemented to ensure an effectual separation between classes. To analyze the performances of the classification, available data have been used for experiments, and both virtual and real museum scenarios are considered. The obtained results demonstrated that the combined five area ratios and LSTM classification were not only able to recognize different hand gestures but it was also able to distinguish between actions with a high degree of similarity (like slide left and slide right classes). The use of deep learning-based LSTM algorithm in the classification phase helped in reducing significantly the number of misclassifications, and achieving an outstanding recognition performance when challenged with real-world data." @default.
- W4313339020 created "2023-01-06" @default.
- W4313339020 creator A5014148326 @default.
- W4313339020 creator A5016950095 @default.
- W4313339020 creator A5066107511 @default.
- W4313339020 creator A5084076903 @default.
- W4313339020 creator A5087572406 @default.
- W4313339020 creator A5090118631 @default.
- W4313339020 date "2022-11-20" @default.
- W4313339020 modified "2023-09-27" @default.
- W4313339020 title "Exploiting Deep Learning-Based LSTM Classification for Improving Hand Gesture Recognition to Enhance Visitors’ Museum Experiences" @default.
- W4313339020 cites W112285410 @default.
- W4313339020 cites W1970665239 @default.
- W4313339020 cites W2007961556 @default.
- W4313339020 cites W2064675550 @default.
- W4313339020 cites W2091313930 @default.
- W4313339020 cites W2136848157 @default.
- W4313339020 cites W2158456925 @default.
- W4313339020 cites W2479605466 @default.
- W4313339020 cites W2544634024 @default.
- W4313339020 cites W2593493017 @default.
- W4313339020 cites W2613983860 @default.
- W4313339020 cites W2801331634 @default.
- W4313339020 cites W2890129614 @default.
- W4313339020 cites W2890213701 @default.
- W4313339020 cites W2990436242 @default.
- W4313339020 cites W3014822860 @default.
- W4313339020 doi "https://doi.org/10.1109/3ict56508.2022.9990722" @default.
- W4313339020 hasPublicationYear "2022" @default.
- W4313339020 type Work @default.
- W4313339020 citedByCount "0" @default.
- W4313339020 crossrefType "proceedings-article" @default.
- W4313339020 hasAuthorship W4313339020A5014148326 @default.
- W4313339020 hasAuthorship W4313339020A5016950095 @default.
- W4313339020 hasAuthorship W4313339020A5066107511 @default.
- W4313339020 hasAuthorship W4313339020A5084076903 @default.
- W4313339020 hasAuthorship W4313339020A5087572406 @default.
- W4313339020 hasAuthorship W4313339020A5090118631 @default.
- W4313339020 hasBestOaLocation W43133390202 @default.
- W4313339020 hasConcept C108583219 @default.
- W4313339020 hasConcept C149635348 @default.
- W4313339020 hasConcept C150594956 @default.
- W4313339020 hasConcept C153180895 @default.
- W4313339020 hasConcept C154945302 @default.
- W4313339020 hasConcept C159437735 @default.
- W4313339020 hasConcept C202444582 @default.
- W4313339020 hasConcept C207347870 @default.
- W4313339020 hasConcept C31972630 @default.
- W4313339020 hasConcept C33923547 @default.
- W4313339020 hasConcept C41008148 @default.
- W4313339020 hasConcept C52622490 @default.
- W4313339020 hasConcept C9652623 @default.
- W4313339020 hasConceptScore W4313339020C108583219 @default.
- W4313339020 hasConceptScore W4313339020C149635348 @default.
- W4313339020 hasConceptScore W4313339020C150594956 @default.
- W4313339020 hasConceptScore W4313339020C153180895 @default.
- W4313339020 hasConceptScore W4313339020C154945302 @default.
- W4313339020 hasConceptScore W4313339020C159437735 @default.
- W4313339020 hasConceptScore W4313339020C202444582 @default.
- W4313339020 hasConceptScore W4313339020C207347870 @default.
- W4313339020 hasConceptScore W4313339020C31972630 @default.
- W4313339020 hasConceptScore W4313339020C33923547 @default.
- W4313339020 hasConceptScore W4313339020C41008148 @default.
- W4313339020 hasConceptScore W4313339020C52622490 @default.
- W4313339020 hasConceptScore W4313339020C9652623 @default.
- W4313339020 hasLocation W43133390201 @default.
- W4313339020 hasLocation W43133390202 @default.
- W4313339020 hasOpenAccess W4313339020 @default.
- W4313339020 hasPrimaryLocation W43133390201 @default.
- W4313339020 hasRelatedWork W1554778538 @default.
- W4313339020 hasRelatedWork W2037450455 @default.
- W4313339020 hasRelatedWork W2107891793 @default.
- W4313339020 hasRelatedWork W2234765641 @default.
- W4313339020 hasRelatedWork W2733060750 @default.
- W4313339020 hasRelatedWork W2773120646 @default.
- W4313339020 hasRelatedWork W3156786002 @default.
- W4313339020 hasRelatedWork W3173596272 @default.
- W4313339020 hasRelatedWork W4317987726 @default.
- W4313339020 hasRelatedWork W4366381586 @default.
- W4313339020 isParatext "false" @default.
- W4313339020 isRetracted "false" @default.
- W4313339020 workType "article" @default.