Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313339027> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4313339027 abstract "Predicting future glycemic events such as hypoglycemia, hyperglycemia, and normal for type 1 diabetes (T1D) remains a significant and challenging issue. In this study, an artificial neural network (ANN)-based model is proposed to predict the future glycemic events of T1D patients. We utilized five T1D patient datasets to build the models and predict future glycemic events with a prediction horizon (PH) of 30 and 60 minutes ahead of time. We applied the data preprocessing method based on the sliding window approach by sliding the blood glucose time-series data from the past 60 minutes (the last 12 data points) as input and using the next 30 and 60 minutes (the next 6 and 12-th data points) as output. All the numeric blood glucose output data are then transformed into a multi-class classification label, such as hypoglycemia, hyperglycemia, and normal. Our proposed model is then used to learn and create the prediction model from the preprocessed blood glucose dataset. Four performance metrics such as accuracy, precision, recall, and f-1 score were utilized to measure the performance of the classification models used in this study, such as Naïve Bayes (NB), Decision Tree (DT), Support Vector Machine (SVM), and K-Nearest Neighbour (KNN). The results showed that our proposed ANN-based model performed better at predicting future glycemic events than other models, with an average accuracy, precision, recall, and f-1 score of 88.649%, 76.661%, 71.731%, 72.609%, and 83.364%, 60.437%, 61.345%, 60.62% for the PH of 30 and 60 minutes, respectively. As a result, knowing this future glycemic event sooner can help patients avoid potentially dangerous conditions and can eventually be used to improve diabetes management." @default.
- W4313339027 created "2023-01-06" @default.
- W4313339027 creator A5011158757 @default.
- W4313339027 creator A5013291354 @default.
- W4313339027 creator A5016450510 @default.
- W4313339027 creator A5025664920 @default.
- W4313339027 creator A5028810282 @default.
- W4313339027 creator A5037097853 @default.
- W4313339027 date "2022-11-20" @default.
- W4313339027 modified "2023-10-18" @default.
- W4313339027 title "Future Glycemic Events Prediction Model Based On Artificial Neural Network" @default.
- W4313339027 cites W1498436455 @default.
- W4313339027 cites W2014928429 @default.
- W4313339027 cites W2020267609 @default.
- W4313339027 cites W2102624023 @default.
- W4313339027 cites W2128232384 @default.
- W4313339027 cites W2131587651 @default.
- W4313339027 cites W2519526531 @default.
- W4313339027 cites W2624348061 @default.
- W4313339027 cites W2804281019 @default.
- W4313339027 cites W2909166675 @default.
- W4313339027 cites W3030586465 @default.
- W4313339027 cites W3096537456 @default.
- W4313339027 cites W3104876936 @default.
- W4313339027 cites W3130920729 @default.
- W4313339027 cites W3135262141 @default.
- W4313339027 cites W3212112283 @default.
- W4313339027 doi "https://doi.org/10.1109/3ict56508.2022.9990708" @default.
- W4313339027 hasPublicationYear "2022" @default.
- W4313339027 type Work @default.
- W4313339027 citedByCount "1" @default.
- W4313339027 countsByYear W43133390272023 @default.
- W4313339027 crossrefType "proceedings-article" @default.
- W4313339027 hasAuthorship W4313339027A5011158757 @default.
- W4313339027 hasAuthorship W4313339027A5013291354 @default.
- W4313339027 hasAuthorship W4313339027A5016450510 @default.
- W4313339027 hasAuthorship W4313339027A5025664920 @default.
- W4313339027 hasAuthorship W4313339027A5028810282 @default.
- W4313339027 hasAuthorship W4313339027A5037097853 @default.
- W4313339027 hasConcept C102392041 @default.
- W4313339027 hasConcept C111919701 @default.
- W4313339027 hasConcept C119857082 @default.
- W4313339027 hasConcept C12267149 @default.
- W4313339027 hasConcept C124101348 @default.
- W4313339027 hasConcept C126322002 @default.
- W4313339027 hasConcept C153180895 @default.
- W4313339027 hasConcept C154945302 @default.
- W4313339027 hasConcept C2778751112 @default.
- W4313339027 hasConcept C2779306644 @default.
- W4313339027 hasConcept C2780473172 @default.
- W4313339027 hasConcept C34736171 @default.
- W4313339027 hasConcept C41008148 @default.
- W4313339027 hasConcept C50644808 @default.
- W4313339027 hasConcept C52001869 @default.
- W4313339027 hasConcept C67186912 @default.
- W4313339027 hasConcept C71924100 @default.
- W4313339027 hasConcept C77088390 @default.
- W4313339027 hasConcept C84525736 @default.
- W4313339027 hasConceptScore W4313339027C102392041 @default.
- W4313339027 hasConceptScore W4313339027C111919701 @default.
- W4313339027 hasConceptScore W4313339027C119857082 @default.
- W4313339027 hasConceptScore W4313339027C12267149 @default.
- W4313339027 hasConceptScore W4313339027C124101348 @default.
- W4313339027 hasConceptScore W4313339027C126322002 @default.
- W4313339027 hasConceptScore W4313339027C153180895 @default.
- W4313339027 hasConceptScore W4313339027C154945302 @default.
- W4313339027 hasConceptScore W4313339027C2778751112 @default.
- W4313339027 hasConceptScore W4313339027C2779306644 @default.
- W4313339027 hasConceptScore W4313339027C2780473172 @default.
- W4313339027 hasConceptScore W4313339027C34736171 @default.
- W4313339027 hasConceptScore W4313339027C41008148 @default.
- W4313339027 hasConceptScore W4313339027C50644808 @default.
- W4313339027 hasConceptScore W4313339027C52001869 @default.
- W4313339027 hasConceptScore W4313339027C67186912 @default.
- W4313339027 hasConceptScore W4313339027C71924100 @default.
- W4313339027 hasConceptScore W4313339027C77088390 @default.
- W4313339027 hasConceptScore W4313339027C84525736 @default.
- W4313339027 hasFunder F4320321287 @default.
- W4313339027 hasLocation W43133390271 @default.
- W4313339027 hasOpenAccess W4313339027 @default.
- W4313339027 hasPrimaryLocation W43133390271 @default.
- W4313339027 hasRelatedWork W2084779923 @default.
- W4313339027 hasRelatedWork W2126100045 @default.
- W4313339027 hasRelatedWork W2595988085 @default.
- W4313339027 hasRelatedWork W3127425528 @default.
- W4313339027 hasRelatedWork W3143658565 @default.
- W4313339027 hasRelatedWork W3186233728 @default.
- W4313339027 hasRelatedWork W3204641204 @default.
- W4313339027 hasRelatedWork W4205958290 @default.
- W4313339027 hasRelatedWork W4214820172 @default.
- W4313339027 hasRelatedWork W4283016678 @default.
- W4313339027 isParatext "false" @default.
- W4313339027 isRetracted "false" @default.
- W4313339027 workType "article" @default.