Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313339627> ?p ?o ?g. }
- W4313339627 endingPage "303" @default.
- W4313339627 startingPage "295" @default.
- W4313339627 abstract "Abstract We present an auxiliary learning task for the problem of neuron segmentation in electron microscopy volumes. The auxiliary task consists of the prediction of local shape descriptors (LSDs), which we combine with conventional voxel-wise direct neighbor affinities for neuron boundary detection. The shape descriptors capture local statistics about the neuron to be segmented, such as diameter, elongation, and direction. On a study comparing several existing methods across various specimen, imaging techniques, and resolutions, auxiliary learning of LSDs consistently increases segmentation accuracy of affinity-based methods over a range of metrics. Furthermore, the addition of LSDs promotes affinity-based segmentation methods to be on par with the current state of the art for neuron segmentation (flood-filling networks), while being two orders of magnitudes more efficient—a critical requirement for the processing of future petabyte-sized datasets." @default.
- W4313339627 created "2023-01-06" @default.
- W4313339627 creator A5000817623 @default.
- W4313339627 creator A5024381551 @default.
- W4313339627 creator A5035652164 @default.
- W4313339627 creator A5058564351 @default.
- W4313339627 creator A5066189518 @default.
- W4313339627 creator A5070633413 @default.
- W4313339627 creator A5085425127 @default.
- W4313339627 creator A5090392376 @default.
- W4313339627 date "2022-12-30" @default.
- W4313339627 modified "2023-10-18" @default.
- W4313339627 title "Local shape descriptors for neuron segmentation" @default.
- W4313339627 cites W2069702026 @default.
- W4313339627 cites W2129259959 @default.
- W4313339627 cites W2169805405 @default.
- W4313339627 cites W2231099397 @default.
- W4313339627 cites W2232480453 @default.
- W4313339627 cites W2261263381 @default.
- W4313339627 cites W2309258625 @default.
- W4313339627 cites W2464708700 @default.
- W4313339627 cites W2557889580 @default.
- W4313339627 cites W2598487345 @default.
- W4313339627 cites W2625278673 @default.
- W4313339627 cites W2760861884 @default.
- W4313339627 cites W2803790834 @default.
- W4313339627 cites W2900490697 @default.
- W4313339627 cites W2901860341 @default.
- W4313339627 cites W2949808130 @default.
- W4313339627 cites W2952723908 @default.
- W4313339627 cites W2962948284 @default.
- W4313339627 cites W2963585925 @default.
- W4313339627 cites W2963659894 @default.
- W4313339627 cites W2965831377 @default.
- W4313339627 cites W2982268628 @default.
- W4313339627 cites W2997451131 @default.
- W4313339627 cites W3016007634 @default.
- W4313339627 cites W3038854314 @default.
- W4313339627 cites W3084308099 @default.
- W4313339627 cites W3087638917 @default.
- W4313339627 cites W3090744416 @default.
- W4313339627 cites W3092940722 @default.
- W4313339627 cites W3120038054 @default.
- W4313339627 cites W3170914969 @default.
- W4313339627 cites W3174415204 @default.
- W4313339627 cites W3186956811 @default.
- W4313339627 cites W3208266771 @default.
- W4313339627 cites W4205328474 @default.
- W4313339627 cites W4206755867 @default.
- W4313339627 doi "https://doi.org/10.1038/s41592-022-01711-z" @default.
- W4313339627 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36585455" @default.
- W4313339627 hasPublicationYear "2022" @default.
- W4313339627 type Work @default.
- W4313339627 citedByCount "8" @default.
- W4313339627 countsByYear W43133396272022 @default.
- W4313339627 countsByYear W43133396272023 @default.
- W4313339627 crossrefType "journal-article" @default.
- W4313339627 hasAuthorship W4313339627A5000817623 @default.
- W4313339627 hasAuthorship W4313339627A5024381551 @default.
- W4313339627 hasAuthorship W4313339627A5035652164 @default.
- W4313339627 hasAuthorship W4313339627A5058564351 @default.
- W4313339627 hasAuthorship W4313339627A5066189518 @default.
- W4313339627 hasAuthorship W4313339627A5070633413 @default.
- W4313339627 hasAuthorship W4313339627A5085425127 @default.
- W4313339627 hasAuthorship W4313339627A5090392376 @default.
- W4313339627 hasBestOaLocation W43133396271 @default.
- W4313339627 hasConcept C124504099 @default.
- W4313339627 hasConcept C134306372 @default.
- W4313339627 hasConcept C153180895 @default.
- W4313339627 hasConcept C154945302 @default.
- W4313339627 hasConcept C162324750 @default.
- W4313339627 hasConcept C187736073 @default.
- W4313339627 hasConcept C2780451532 @default.
- W4313339627 hasConcept C33923547 @default.
- W4313339627 hasConcept C41008148 @default.
- W4313339627 hasConcept C54170458 @default.
- W4313339627 hasConcept C62354387 @default.
- W4313339627 hasConcept C89600930 @default.
- W4313339627 hasConceptScore W4313339627C124504099 @default.
- W4313339627 hasConceptScore W4313339627C134306372 @default.
- W4313339627 hasConceptScore W4313339627C153180895 @default.
- W4313339627 hasConceptScore W4313339627C154945302 @default.
- W4313339627 hasConceptScore W4313339627C162324750 @default.
- W4313339627 hasConceptScore W4313339627C187736073 @default.
- W4313339627 hasConceptScore W4313339627C2780451532 @default.
- W4313339627 hasConceptScore W4313339627C33923547 @default.
- W4313339627 hasConceptScore W4313339627C41008148 @default.
- W4313339627 hasConceptScore W4313339627C54170458 @default.
- W4313339627 hasConceptScore W4313339627C62354387 @default.
- W4313339627 hasConceptScore W4313339627C89600930 @default.
- W4313339627 hasFunder F4320310124 @default.
- W4313339627 hasIssue "2" @default.
- W4313339627 hasLocation W43133396271 @default.
- W4313339627 hasLocation W43133396272 @default.
- W4313339627 hasLocation W43133396273 @default.
- W4313339627 hasLocation W43133396274 @default.
- W4313339627 hasOpenAccess W4313339627 @default.
- W4313339627 hasPrimaryLocation W43133396271 @default.