Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313339735> ?p ?o ?g. }
- W4313339735 endingPage "293" @default.
- W4313339735 startingPage "286" @default.
- W4313339735 abstract "Artificial intelligence is currently being used to facilitate early disease detection, better understand disease progression, optimize medication/treatment dosages, and uncover promising novel treatments and potential outcomes.Utilizing the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) dataset, we built a machine learning model to predict depression remission rates using same clinical data as features for each of the first three antidepressant treatment steps in STAR*D. We only used early treatment data (baseline and first follow up) in each STAR*D step to temporally analyze predictive features of remission at the end of the step.Our model showed significant prediction performance across the three treatment steps, At step 1, Model accuracy was 66 %; sensitivity-65 %, specificity-67 %, positive predictive value (PPV)-65.5 %, and negative predictive value (NPV)-66.6 %. At step 2, model accuracy was 71.3 %, sensitivity-74.3 %, specificity-69 %, PPV-64.5 %, and NPV-77.9 %. At step 3, accuracy reached 84.6 %; sensitivity-69 %, specificity-88.8 %, PPV-67 %, and NPV-91.1 %. Across all three steps, the early Quick Inventory of Depressive Symptomatology-Self-Report (QIDS-SR) scores were key elements in predicting the final treatment outcome. The model also identified key sociodemographic factors that predicted treatment remission at different steps.The retrospective design, lack of replication in an independent dataset, and the use of a complete case analysis model in our analysis.This proof-of-concept study showed that using early treatment data, multi-step temporal prediction of depressive symptom remission results in clinically useful accuracy rates. Whether these predictive models are generalizable deserves further study." @default.
- W4313339735 created "2023-01-06" @default.
- W4313339735 creator A5005712710 @default.
- W4313339735 creator A5021471786 @default.
- W4313339735 creator A5025018876 @default.
- W4313339735 creator A5032357963 @default.
- W4313339735 creator A5039164971 @default.
- W4313339735 creator A5046998115 @default.
- W4313339735 creator A5060482592 @default.
- W4313339735 creator A5082192669 @default.
- W4313339735 date "2023-03-01" @default.
- W4313339735 modified "2023-10-17" @default.
- W4313339735 title "Temporal multi-step predictive modeling of remission in major depressive disorder using early stage treatment data; STAR*D based machine learning approach" @default.
- W4313339735 cites W1970133878 @default.
- W4313339735 cites W1993548704 @default.
- W4313339735 cites W1997078577 @default.
- W4313339735 cites W2016292245 @default.
- W4313339735 cites W2023634568 @default.
- W4313339735 cites W2039056175 @default.
- W4313339735 cites W2042944469 @default.
- W4313339735 cites W2056841881 @default.
- W4313339735 cites W2078195742 @default.
- W4313339735 cites W2092957075 @default.
- W4313339735 cites W2111118992 @default.
- W4313339735 cites W2140592967 @default.
- W4313339735 cites W2143247032 @default.
- W4313339735 cites W2148933229 @default.
- W4313339735 cites W2149402043 @default.
- W4313339735 cites W2151161180 @default.
- W4313339735 cites W2257438637 @default.
- W4313339735 cites W2472069995 @default.
- W4313339735 cites W2519930325 @default.
- W4313339735 cites W2562140166 @default.
- W4313339735 cites W2566453300 @default.
- W4313339735 cites W2601834048 @default.
- W4313339735 cites W2607113351 @default.
- W4313339735 cites W2726375170 @default.
- W4313339735 cites W2737966001 @default.
- W4313339735 cites W2775173797 @default.
- W4313339735 cites W2786219988 @default.
- W4313339735 cites W2789034326 @default.
- W4313339735 cites W2791633678 @default.
- W4313339735 cites W2792698409 @default.
- W4313339735 cites W2796240618 @default.
- W4313339735 cites W2801765286 @default.
- W4313339735 cites W2807037447 @default.
- W4313339735 cites W2886208406 @default.
- W4313339735 cites W2892026058 @default.
- W4313339735 cites W2900054827 @default.
- W4313339735 cites W2900910515 @default.
- W4313339735 cites W2912581524 @default.
- W4313339735 cites W2934413595 @default.
- W4313339735 cites W2936573766 @default.
- W4313339735 cites W2964155168 @default.
- W4313339735 cites W2966489974 @default.
- W4313339735 cites W2977373448 @default.
- W4313339735 cites W2985355520 @default.
- W4313339735 cites W2988267224 @default.
- W4313339735 cites W2989335918 @default.
- W4313339735 cites W3004379845 @default.
- W4313339735 cites W3007001459 @default.
- W4313339735 cites W3015620176 @default.
- W4313339735 cites W3016053201 @default.
- W4313339735 cites W3021203631 @default.
- W4313339735 cites W3022337098 @default.
- W4313339735 cites W3027100496 @default.
- W4313339735 cites W3046991059 @default.
- W4313339735 cites W3152628277 @default.
- W4313339735 cites W3180628988 @default.
- W4313339735 cites W3196757689 @default.
- W4313339735 cites W496281 @default.
- W4313339735 cites W52021188 @default.
- W4313339735 doi "https://doi.org/10.1016/j.jad.2022.12.076" @default.
- W4313339735 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36584711" @default.
- W4313339735 hasPublicationYear "2023" @default.
- W4313339735 type Work @default.
- W4313339735 citedByCount "0" @default.
- W4313339735 crossrefType "journal-article" @default.
- W4313339735 hasAuthorship W4313339735A5005712710 @default.
- W4313339735 hasAuthorship W4313339735A5021471786 @default.
- W4313339735 hasAuthorship W4313339735A5025018876 @default.
- W4313339735 hasAuthorship W4313339735A5032357963 @default.
- W4313339735 hasAuthorship W4313339735A5039164971 @default.
- W4313339735 hasAuthorship W4313339735A5046998115 @default.
- W4313339735 hasAuthorship W4313339735A5060482592 @default.
- W4313339735 hasAuthorship W4313339735A5082192669 @default.
- W4313339735 hasConcept C119857082 @default.
- W4313339735 hasConcept C126322002 @default.
- W4313339735 hasConcept C139719470 @default.
- W4313339735 hasConcept C146357865 @default.
- W4313339735 hasConcept C151730666 @default.
- W4313339735 hasConcept C154945302 @default.
- W4313339735 hasConcept C162324750 @default.
- W4313339735 hasConcept C2776867660 @default.
- W4313339735 hasConcept C2779144063 @default.
- W4313339735 hasConcept C2779177272 @default.
- W4313339735 hasConcept C2780051608 @default.
- W4313339735 hasConcept C2781161787 @default.