Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313339747> ?p ?o ?g. }
- W4313339747 endingPage "108401" @default.
- W4313339747 startingPage "108401" @default.
- W4313339747 abstract "Recently, molecular representation and property exploration, with the combination of neural network, play a critical role in the field of drug design and discovery for assisting in drug related research. However, previous research in molecular representation relies heavily on artificial extraction of features based on biological experiments which may result in a manually introduced noise of molecular information with high cost in time and money. In this paper, a novel method named Substructural Hierarchical Attention Network (SuHAN) is proposed to discover inherent characteristics of molecules for representation learning. Specifically, SuHAN is composed of the cascaded layer: atom-level layer and substructure-level layer. Molecule in the SMILES format is divided into several substructural fragments by predefined partition rules, and then they are fed into atom-level layer and substructure-level layer successively to obtain feature representation from different perspective: atomic view and substructural view. In this way, the prominent structural features that may be omitted in global extraction are excavated from a fine-grained viewpoint and fused to reconstruct representative pattern in an overall view. Experiments on biophysics and physiology datasets demonstrate that our model is competitive with a significant improvement of both accuracy and stability in performance. We confirmed that the substructural segments and progressive hierarchical networks lead to an effective molecular representation for downstream tasks. These results provide a novel perspective about reconstructing overall pattern through local prominent structure." @default.
- W4313339747 created "2023-01-06" @default.
- W4313339747 creator A5035191553 @default.
- W4313339747 creator A5039404340 @default.
- W4313339747 creator A5048199386 @default.
- W4313339747 creator A5073118273 @default.
- W4313339747 creator A5074550946 @default.
- W4313339747 date "2023-03-01" @default.
- W4313339747 modified "2023-10-16" @default.
- W4313339747 title "SuHAN: Substructural hierarchical attention network for molecular representation" @default.
- W4313339747 cites W1975147762 @default.
- W4313339747 cites W1978777023 @default.
- W4313339747 cites W1988037271 @default.
- W4313339747 cites W1991286793 @default.
- W4313339747 cites W2008505552 @default.
- W4313339747 cites W2018796817 @default.
- W4313339747 cites W2046589863 @default.
- W4313339747 cites W2064675550 @default.
- W4313339747 cites W2076498053 @default.
- W4313339747 cites W2142572836 @default.
- W4313339747 cites W2154117231 @default.
- W4313339747 cites W2382467334 @default.
- W4313339747 cites W2406943157 @default.
- W4313339747 cites W2461470610 @default.
- W4313339747 cites W2461620095 @default.
- W4313339747 cites W2594183968 @default.
- W4313339747 cites W2793643126 @default.
- W4313339747 cites W2799900537 @default.
- W4313339747 cites W2801991413 @default.
- W4313339747 cites W2940724395 @default.
- W4313339747 cites W2948035163 @default.
- W4313339747 cites W2963734039 @default.
- W4313339747 cites W2966357564 @default.
- W4313339747 cites W2968734407 @default.
- W4313339747 cites W2984339599 @default.
- W4313339747 cites W3006737593 @default.
- W4313339747 cites W3008264426 @default.
- W4313339747 cites W3030978062 @default.
- W4313339747 cites W3037990336 @default.
- W4313339747 cites W3087318293 @default.
- W4313339747 cites W3103092523 @default.
- W4313339747 cites W3123943527 @default.
- W4313339747 cites W3129238601 @default.
- W4313339747 cites W3134426364 @default.
- W4313339747 cites W3166272013 @default.
- W4313339747 cites W3201055938 @default.
- W4313339747 cites W4213077304 @default.
- W4313339747 cites W4214817272 @default.
- W4313339747 cites W4214868967 @default.
- W4313339747 cites W4297179162 @default.
- W4313339747 doi "https://doi.org/10.1016/j.jmgm.2022.108401" @default.
- W4313339747 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36584590" @default.
- W4313339747 hasPublicationYear "2023" @default.
- W4313339747 type Work @default.
- W4313339747 citedByCount "0" @default.
- W4313339747 crossrefType "journal-article" @default.
- W4313339747 hasAuthorship W4313339747A5035191553 @default.
- W4313339747 hasAuthorship W4313339747A5039404340 @default.
- W4313339747 hasAuthorship W4313339747A5048199386 @default.
- W4313339747 hasAuthorship W4313339747A5073118273 @default.
- W4313339747 hasAuthorship W4313339747A5074550946 @default.
- W4313339747 hasConcept C12713177 @default.
- W4313339747 hasConcept C127413603 @default.
- W4313339747 hasConcept C138885662 @default.
- W4313339747 hasConcept C153180895 @default.
- W4313339747 hasConcept C154945302 @default.
- W4313339747 hasConcept C171250308 @default.
- W4313339747 hasConcept C17744445 @default.
- W4313339747 hasConcept C192562407 @default.
- W4313339747 hasConcept C199539241 @default.
- W4313339747 hasConcept C2776359362 @default.
- W4313339747 hasConcept C2776401178 @default.
- W4313339747 hasConcept C2779227376 @default.
- W4313339747 hasConcept C2780186347 @default.
- W4313339747 hasConcept C38652104 @default.
- W4313339747 hasConcept C41008148 @default.
- W4313339747 hasConcept C41895202 @default.
- W4313339747 hasConcept C66938386 @default.
- W4313339747 hasConcept C94625758 @default.
- W4313339747 hasConcept C99679407 @default.
- W4313339747 hasConceptScore W4313339747C12713177 @default.
- W4313339747 hasConceptScore W4313339747C127413603 @default.
- W4313339747 hasConceptScore W4313339747C138885662 @default.
- W4313339747 hasConceptScore W4313339747C153180895 @default.
- W4313339747 hasConceptScore W4313339747C154945302 @default.
- W4313339747 hasConceptScore W4313339747C171250308 @default.
- W4313339747 hasConceptScore W4313339747C17744445 @default.
- W4313339747 hasConceptScore W4313339747C192562407 @default.
- W4313339747 hasConceptScore W4313339747C199539241 @default.
- W4313339747 hasConceptScore W4313339747C2776359362 @default.
- W4313339747 hasConceptScore W4313339747C2776401178 @default.
- W4313339747 hasConceptScore W4313339747C2779227376 @default.
- W4313339747 hasConceptScore W4313339747C2780186347 @default.
- W4313339747 hasConceptScore W4313339747C38652104 @default.
- W4313339747 hasConceptScore W4313339747C41008148 @default.
- W4313339747 hasConceptScore W4313339747C41895202 @default.
- W4313339747 hasConceptScore W4313339747C66938386 @default.
- W4313339747 hasConceptScore W4313339747C94625758 @default.