Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313341958> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4313341958 endingPage "268" @default.
- W4313341958 startingPage "258" @default.
- W4313341958 abstract "The exponential rise in motorization has resulted in an exponential rise in road accidents and fatalities. Non-helmeted motorcyclists contribute to major roadside accidents. Helmets must be worn by motorcyclists to prevent such horrendous accidents. We need a large workforce of traffic police to monitor and ensure the safety of motorcyclists by penalizing motorcyclists for not wearing helmets and this activity costs a major chunk of their time. Identification of motorcyclists without helmets in real-time is a crucial task to prevent the occurrence of accidents. This paper aims at identifying motorcyclists without helmets and extracting their motorcycle's number plate using an automated system. In recent years the accuracy and performance of the object detection models have significantly increased with the help of deep learning. Some of the advanced features in YOLOv3 are a feature extractor network with multi-scale detection and some changes in loss function combining detection and classification in a single architecture. In this project, the main principle involved is object detection using deep learning at three levels. The objects detected are person, motorcycle at the first level, helmet detection at the second level, and license plate detection at a third level all using YOLOv3. The license plate is detected and a cropped image of the license plate is used to extract its digits using OCR. We have used the above-mentioned methods to build integrated systems for helmet detection and license plate number extraction. The end of this paper suggests some future advances to the License Plate recognition system." @default.
- W4313341958 created "2023-01-06" @default.
- W4313341958 creator A5003807322 @default.
- W4313341958 creator A5028228998 @default.
- W4313341958 creator A5039425965 @default.
- W4313341958 creator A5068585632 @default.
- W4313341958 creator A5090313037 @default.
- W4313341958 date "2022-01-01" @default.
- W4313341958 modified "2023-10-12" @default.
- W4313341958 title "Helmet Detection and License Plate Extraction Using Machine Learning and Computer Vision" @default.
- W4313341958 cites W1976017491 @default.
- W4313341958 cites W2000629924 @default.
- W4313341958 cites W2488034351 @default.
- W4313341958 cites W2549635795 @default.
- W4313341958 cites W2602070013 @default.
- W4313341958 cites W2735042944 @default.
- W4313341958 cites W2793809976 @default.
- W4313341958 cites W2803429134 @default.
- W4313341958 cites W2806260107 @default.
- W4313341958 cites W2840312187 @default.
- W4313341958 cites W2963770292 @default.
- W4313341958 cites W3046210524 @default.
- W4313341958 doi "https://doi.org/10.1007/978-3-031-22405-8_20" @default.
- W4313341958 hasPublicationYear "2022" @default.
- W4313341958 type Work @default.
- W4313341958 citedByCount "0" @default.
- W4313341958 crossrefType "book-chapter" @default.
- W4313341958 hasAuthorship W4313341958A5003807322 @default.
- W4313341958 hasAuthorship W4313341958A5028228998 @default.
- W4313341958 hasAuthorship W4313341958A5039425965 @default.
- W4313341958 hasAuthorship W4313341958A5068585632 @default.
- W4313341958 hasAuthorship W4313341958A5090313037 @default.
- W4313341958 hasConcept C108583219 @default.
- W4313341958 hasConcept C111919701 @default.
- W4313341958 hasConcept C117978034 @default.
- W4313341958 hasConcept C119857082 @default.
- W4313341958 hasConcept C127413603 @default.
- W4313341958 hasConcept C153180895 @default.
- W4313341958 hasConcept C154945302 @default.
- W4313341958 hasConcept C21880701 @default.
- W4313341958 hasConcept C2776151529 @default.
- W4313341958 hasConcept C2780560020 @default.
- W4313341958 hasConcept C31972630 @default.
- W4313341958 hasConcept C41008148 @default.
- W4313341958 hasConcept C52622490 @default.
- W4313341958 hasConceptScore W4313341958C108583219 @default.
- W4313341958 hasConceptScore W4313341958C111919701 @default.
- W4313341958 hasConceptScore W4313341958C117978034 @default.
- W4313341958 hasConceptScore W4313341958C119857082 @default.
- W4313341958 hasConceptScore W4313341958C127413603 @default.
- W4313341958 hasConceptScore W4313341958C153180895 @default.
- W4313341958 hasConceptScore W4313341958C154945302 @default.
- W4313341958 hasConceptScore W4313341958C21880701 @default.
- W4313341958 hasConceptScore W4313341958C2776151529 @default.
- W4313341958 hasConceptScore W4313341958C2780560020 @default.
- W4313341958 hasConceptScore W4313341958C31972630 @default.
- W4313341958 hasConceptScore W4313341958C41008148 @default.
- W4313341958 hasConceptScore W4313341958C52622490 @default.
- W4313341958 hasLocation W43133419581 @default.
- W4313341958 hasOpenAccess W4313341958 @default.
- W4313341958 hasPrimaryLocation W43133419581 @default.
- W4313341958 hasRelatedWork W2105449223 @default.
- W4313341958 hasRelatedWork W2744160734 @default.
- W4313341958 hasRelatedWork W2765146509 @default.
- W4313341958 hasRelatedWork W2839634087 @default.
- W4313341958 hasRelatedWork W2946016983 @default.
- W4313341958 hasRelatedWork W3082028648 @default.
- W4313341958 hasRelatedWork W3136979370 @default.
- W4313341958 hasRelatedWork W3209834854 @default.
- W4313341958 hasRelatedWork W4285183766 @default.
- W4313341958 hasRelatedWork W4312200629 @default.
- W4313341958 isParatext "false" @default.
- W4313341958 isRetracted "false" @default.
- W4313341958 workType "book-chapter" @default.