Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313342368> ?p ?o ?g. }
- W4313342368 endingPage "207" @default.
- W4313342368 startingPage "195" @default.
- W4313342368 abstract "Roadways have always been one of the most used modes of transportation, and their contribution to the nation’s economy is also huge. To meet the demands of the growing global population and an increase in urbanization, there has been an exponential rise in the number of vehicles plying on the roads as well as the length of the roads. With this increase in traffic, coupled with other issues like heavy rainfall, the material used for the construction of the road, etc., the condition of the roads deteriorates with cracks and potholes developing on them, which may lead to serious accidents. For effective maintenance of roads and to reduce the associated risks, these defects must be detected. With the advent of Deep Learning (DL) in the recent past and its applications in various sectors, we have comprehensively explored various approaches, particularly using DL in this study, along with the associated challenges in adopting such techniques and future opportunities in this domain. Based on our analysis, using object detection-based models turned out to outperform other approaches." @default.
- W4313342368 created "2023-01-06" @default.
- W4313342368 creator A5006032491 @default.
- W4313342368 creator A5048002840 @default.
- W4313342368 creator A5077378550 @default.
- W4313342368 creator A5088484645 @default.
- W4313342368 date "2022-01-01" @default.
- W4313342368 modified "2023-10-17" @default.
- W4313342368 title "Pavement Distress Detection Using Deep Learning Based Methods: A Survey on Role, Challenges and Opportunities" @default.
- W4313342368 cites W1849277567 @default.
- W4313342368 cites W2074925468 @default.
- W4313342368 cites W2076063813 @default.
- W4313342368 cites W2144801789 @default.
- W4313342368 cites W2163352987 @default.
- W4313342368 cites W2293021890 @default.
- W4313342368 cites W2336427774 @default.
- W4313342368 cites W2407692387 @default.
- W4313342368 cites W2511065100 @default.
- W4313342368 cites W2735386636 @default.
- W4313342368 cites W2748643398 @default.
- W4313342368 cites W2810123099 @default.
- W4313342368 cites W28313688 @default.
- W4313342368 cites W2896496331 @default.
- W4313342368 cites W2898061234 @default.
- W4313342368 cites W2899803215 @default.
- W4313342368 cites W2912049211 @default.
- W4313342368 cites W2912586254 @default.
- W4313342368 cites W2913071089 @default.
- W4313342368 cites W2913348995 @default.
- W4313342368 cites W2913930668 @default.
- W4313342368 cites W2945689285 @default.
- W4313342368 cites W2964308596 @default.
- W4313342368 cites W2978200937 @default.
- W4313342368 cites W2982407821 @default.
- W4313342368 cites W2997453354 @default.
- W4313342368 cites W3001456352 @default.
- W4313342368 cites W3007515473 @default.
- W4313342368 cites W3021470593 @default.
- W4313342368 cites W3106250896 @default.
- W4313342368 cites W3106893417 @default.
- W4313342368 cites W3124942917 @default.
- W4313342368 cites W3156447956 @default.
- W4313342368 cites W3158773791 @default.
- W4313342368 cites W3175064897 @default.
- W4313342368 cites W3200966602 @default.
- W4313342368 cites W3203911595 @default.
- W4313342368 cites W4210261261 @default.
- W4313342368 cites W4292721963 @default.
- W4313342368 cites W639708223 @default.
- W4313342368 doi "https://doi.org/10.1007/978-3-031-21750-0_17" @default.
- W4313342368 hasPublicationYear "2022" @default.
- W4313342368 type Work @default.
- W4313342368 citedByCount "0" @default.
- W4313342368 crossrefType "book-chapter" @default.
- W4313342368 hasAuthorship W4313342368A5006032491 @default.
- W4313342368 hasAuthorship W4313342368A5048002840 @default.
- W4313342368 hasAuthorship W4313342368A5077378550 @default.
- W4313342368 hasAuthorship W4313342368A5088484645 @default.
- W4313342368 hasConcept C112930515 @default.
- W4313342368 hasConcept C127413603 @default.
- W4313342368 hasConcept C139265228 @default.
- W4313342368 hasConcept C144024400 @default.
- W4313342368 hasConcept C144133560 @default.
- W4313342368 hasConcept C147176958 @default.
- W4313342368 hasConcept C149923435 @default.
- W4313342368 hasConcept C162324750 @default.
- W4313342368 hasConcept C18903297 @default.
- W4313342368 hasConcept C22212356 @default.
- W4313342368 hasConcept C2908647359 @default.
- W4313342368 hasConcept C39853841 @default.
- W4313342368 hasConcept C41008148 @default.
- W4313342368 hasConcept C50522688 @default.
- W4313342368 hasConcept C77595967 @default.
- W4313342368 hasConcept C86803240 @default.
- W4313342368 hasConceptScore W4313342368C112930515 @default.
- W4313342368 hasConceptScore W4313342368C127413603 @default.
- W4313342368 hasConceptScore W4313342368C139265228 @default.
- W4313342368 hasConceptScore W4313342368C144024400 @default.
- W4313342368 hasConceptScore W4313342368C144133560 @default.
- W4313342368 hasConceptScore W4313342368C147176958 @default.
- W4313342368 hasConceptScore W4313342368C149923435 @default.
- W4313342368 hasConceptScore W4313342368C162324750 @default.
- W4313342368 hasConceptScore W4313342368C18903297 @default.
- W4313342368 hasConceptScore W4313342368C22212356 @default.
- W4313342368 hasConceptScore W4313342368C2908647359 @default.
- W4313342368 hasConceptScore W4313342368C39853841 @default.
- W4313342368 hasConceptScore W4313342368C41008148 @default.
- W4313342368 hasConceptScore W4313342368C50522688 @default.
- W4313342368 hasConceptScore W4313342368C77595967 @default.
- W4313342368 hasConceptScore W4313342368C86803240 @default.
- W4313342368 hasLocation W43133423681 @default.
- W4313342368 hasOpenAccess W4313342368 @default.
- W4313342368 hasPrimaryLocation W43133423681 @default.
- W4313342368 hasRelatedWork W2037645870 @default.
- W4313342368 hasRelatedWork W2355679944 @default.
- W4313342368 hasRelatedWork W2356965334 @default.
- W4313342368 hasRelatedWork W2377448606 @default.
- W4313342368 hasRelatedWork W2379978669 @default.