Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313343204> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4313343204 endingPage "125" @default.
- W4313343204 startingPage "117" @default.
- W4313343204 abstract "Mental health is of utmost importance in present times as mental health problems can have a negative impact on an individual. Stress recognition is an important part of the digital healthcare system as stress may act as a catalyst and lead to mental health problems or further amplify them. With the advancement of technology, the presence of smart wearable devices is seen and it can be used to automate stress recognition for digital healthcare. These smart wearable devices have physiological sensors embedded into them. The data collected from these physiological sensors have paved an efficient way for stress recognition in the user. Most of the previous work related to stress recognition was done using classical machine learning approaches. One of the major drawbacks related to these approaches is that they require manually extracting important features that will be helpful in stress recognition. Extracting these features requires human domain expertise. Another drawback of previous works was that it only caters to specific groups of individuals such as stress among youths, stress due to the workplace, etc. and fails to generalize. To overcome the issues related to previous works done, this study proposes a transformer-based deep learning approach for automating the feature extraction phase and classifying a user’s state into three classes baseline, stress, and amusement." @default.
- W4313343204 created "2023-01-06" @default.
- W4313343204 creator A5024489529 @default.
- W4313343204 creator A5052320959 @default.
- W4313343204 creator A5071101571 @default.
- W4313343204 creator A5076790933 @default.
- W4313343204 date "2022-01-01" @default.
- W4313343204 modified "2023-10-12" @default.
- W4313343204 title "An Automated Stress Recognition for Digital Healthcare: Towards E-Governance" @default.
- W4313343204 cites W1978891587 @default.
- W4313343204 cites W2144961120 @default.
- W4313343204 cites W2585267845 @default.
- W4313343204 cites W2894771803 @default.
- W4313343204 cites W2917316317 @default.
- W4313343204 cites W3010735150 @default.
- W4313343204 cites W3011779818 @default.
- W4313343204 cites W3086788763 @default.
- W4313343204 cites W3088791655 @default.
- W4313343204 cites W3097566313 @default.
- W4313343204 cites W3154846076 @default.
- W4313343204 cites W3159540992 @default.
- W4313343204 cites W3200655815 @default.
- W4313343204 cites W4205234192 @default.
- W4313343204 cites W4285135202 @default.
- W4313343204 cites W4288265053 @default.
- W4313343204 doi "https://doi.org/10.1007/978-3-031-22950-3_10" @default.
- W4313343204 hasPublicationYear "2022" @default.
- W4313343204 type Work @default.
- W4313343204 citedByCount "0" @default.
- W4313343204 crossrefType "book-chapter" @default.
- W4313343204 hasAuthorship W4313343204A5024489529 @default.
- W4313343204 hasAuthorship W4313343204A5052320959 @default.
- W4313343204 hasAuthorship W4313343204A5071101571 @default.
- W4313343204 hasAuthorship W4313343204A5076790933 @default.
- W4313343204 hasConcept C107457646 @default.
- W4313343204 hasConcept C118552586 @default.
- W4313343204 hasConcept C134362201 @default.
- W4313343204 hasConcept C138885662 @default.
- W4313343204 hasConcept C149635348 @default.
- W4313343204 hasConcept C150594956 @default.
- W4313343204 hasConcept C154945302 @default.
- W4313343204 hasConcept C15744967 @default.
- W4313343204 hasConcept C160735492 @default.
- W4313343204 hasConcept C162324750 @default.
- W4313343204 hasConcept C21036866 @default.
- W4313343204 hasConcept C2992695702 @default.
- W4313343204 hasConcept C41008148 @default.
- W4313343204 hasConcept C41895202 @default.
- W4313343204 hasConcept C50522688 @default.
- W4313343204 hasConceptScore W4313343204C107457646 @default.
- W4313343204 hasConceptScore W4313343204C118552586 @default.
- W4313343204 hasConceptScore W4313343204C134362201 @default.
- W4313343204 hasConceptScore W4313343204C138885662 @default.
- W4313343204 hasConceptScore W4313343204C149635348 @default.
- W4313343204 hasConceptScore W4313343204C150594956 @default.
- W4313343204 hasConceptScore W4313343204C154945302 @default.
- W4313343204 hasConceptScore W4313343204C15744967 @default.
- W4313343204 hasConceptScore W4313343204C160735492 @default.
- W4313343204 hasConceptScore W4313343204C162324750 @default.
- W4313343204 hasConceptScore W4313343204C21036866 @default.
- W4313343204 hasConceptScore W4313343204C2992695702 @default.
- W4313343204 hasConceptScore W4313343204C41008148 @default.
- W4313343204 hasConceptScore W4313343204C41895202 @default.
- W4313343204 hasConceptScore W4313343204C50522688 @default.
- W4313343204 hasLocation W43133432041 @default.
- W4313343204 hasOpenAccess W4313343204 @default.
- W4313343204 hasPrimaryLocation W43133432041 @default.
- W4313343204 hasRelatedWork W2012157391 @default.
- W4313343204 hasRelatedWork W2138394177 @default.
- W4313343204 hasRelatedWork W2330338213 @default.
- W4313343204 hasRelatedWork W2562087406 @default.
- W4313343204 hasRelatedWork W2987474128 @default.
- W4313343204 hasRelatedWork W2999645641 @default.
- W4313343204 hasRelatedWork W3044007678 @default.
- W4313343204 hasRelatedWork W3094264338 @default.
- W4313343204 hasRelatedWork W3107474891 @default.
- W4313343204 hasRelatedWork W4226365360 @default.
- W4313343204 isParatext "false" @default.
- W4313343204 isRetracted "false" @default.
- W4313343204 workType "book-chapter" @default.