Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313343321> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4313343321 endingPage "310" @default.
- W4313343321 startingPage "292" @default.
- W4313343321 abstract "Malware analysis techniques are divided into static and dynamic analysis. Both techniques can be bypassed by circumvention techniques such as obfuscation. In a series of works, the authors have promoted the use of symbolic executions combined with machine learning to avoid such traps. Most of those works rely on natural graph-based representations that can then be plugged into graph-based learning algorithms such as Gspan. There are two main problems with this approach. The first one is in the cost of computing the graph. Indeed, working with graphs requires one to compute and representing the entire state-space of the file under analysis. As such computation is too cumbersome, the techniques often rely on developing strategies to compute a representative subgraph of the behaviors. Unfortunately, efficient graph-building strategies remain weakly explored. The second problem is in the classification itself. Graph-based machine learning algorithms rely on comparing the biggest common structures. This sidelines small but specific parts of the malware signature. In addition, it does not allow us to work with efficient algorithms such as support vector machine. We propose a new efficient open source toolchain for machine learning-based classification. We also explore how graph-kernel techniques can be used in the process. We focus on the 1-dimensional Weisfeiler-Lehman kernel, which can capture local similarities between graphs. Our experimental results show that our approach (1) outperforms existing ones by an impressive factor, (2) is resistant to static adversarial attacks." @default.
- W4313343321 created "2023-01-06" @default.
- W4313343321 creator A5003493888 @default.
- W4313343321 creator A5030129842 @default.
- W4313343321 date "2022-01-01" @default.
- W4313343321 modified "2023-10-12" @default.
- W4313343321 title "Malware Analysis with Symbolic Execution and Graph Kernel" @default.
- W4313343321 cites W1497028280 @default.
- W4313343321 cites W1583484179 @default.
- W4313343321 cites W1984892324 @default.
- W4313343321 cites W2041572101 @default.
- W4313343321 cites W2046185165 @default.
- W4313343321 cites W2132874238 @default.
- W4313343321 cites W2159676889 @default.
- W4313343321 cites W2408027109 @default.
- W4313343321 cites W2514847810 @default.
- W4313343321 cites W2514974017 @default.
- W4313343321 cites W2620363344 @default.
- W4313343321 cites W2670925489 @default.
- W4313343321 cites W2898476210 @default.
- W4313343321 cites W2900633536 @default.
- W4313343321 cites W2988961468 @default.
- W4313343321 cites W2992853260 @default.
- W4313343321 cites W2998010923 @default.
- W4313343321 cites W3008890513 @default.
- W4313343321 cites W3178152064 @default.
- W4313343321 cites W3193668405 @default.
- W4313343321 cites W4251638477 @default.
- W4313343321 cites W4281385582 @default.
- W4313343321 cites W81140875 @default.
- W4313343321 doi "https://doi.org/10.1007/978-3-031-22295-5_16" @default.
- W4313343321 hasPublicationYear "2022" @default.
- W4313343321 type Work @default.
- W4313343321 citedByCount "1" @default.
- W4313343321 countsByYear W43133433212023 @default.
- W4313343321 crossrefType "book-chapter" @default.
- W4313343321 hasAuthorship W4313343321A5003493888 @default.
- W4313343321 hasAuthorship W4313343321A5030129842 @default.
- W4313343321 hasBestOaLocation W43133433212 @default.
- W4313343321 hasConcept C100595998 @default.
- W4313343321 hasConcept C102379954 @default.
- W4313343321 hasConcept C119857082 @default.
- W4313343321 hasConcept C122280245 @default.
- W4313343321 hasConcept C12267149 @default.
- W4313343321 hasConcept C132525143 @default.
- W4313343321 hasConcept C154945302 @default.
- W4313343321 hasConcept C160446489 @default.
- W4313343321 hasConcept C2779395397 @default.
- W4313343321 hasConcept C38652104 @default.
- W4313343321 hasConcept C41008148 @default.
- W4313343321 hasConcept C541664917 @default.
- W4313343321 hasConcept C80444323 @default.
- W4313343321 hasConceptScore W4313343321C100595998 @default.
- W4313343321 hasConceptScore W4313343321C102379954 @default.
- W4313343321 hasConceptScore W4313343321C119857082 @default.
- W4313343321 hasConceptScore W4313343321C122280245 @default.
- W4313343321 hasConceptScore W4313343321C12267149 @default.
- W4313343321 hasConceptScore W4313343321C132525143 @default.
- W4313343321 hasConceptScore W4313343321C154945302 @default.
- W4313343321 hasConceptScore W4313343321C160446489 @default.
- W4313343321 hasConceptScore W4313343321C2779395397 @default.
- W4313343321 hasConceptScore W4313343321C38652104 @default.
- W4313343321 hasConceptScore W4313343321C41008148 @default.
- W4313343321 hasConceptScore W4313343321C541664917 @default.
- W4313343321 hasConceptScore W4313343321C80444323 @default.
- W4313343321 hasLocation W43133433211 @default.
- W4313343321 hasLocation W43133433212 @default.
- W4313343321 hasOpenAccess W4313343321 @default.
- W4313343321 hasPrimaryLocation W43133433211 @default.
- W4313343321 hasRelatedWork W2312231142 @default.
- W4313343321 hasRelatedWork W2800695847 @default.
- W4313343321 hasRelatedWork W2942650110 @default.
- W4313343321 hasRelatedWork W2968586400 @default.
- W4313343321 hasRelatedWork W3109313076 @default.
- W4313343321 hasRelatedWork W3128672700 @default.
- W4313343321 hasRelatedWork W4224878981 @default.
- W4313343321 hasRelatedWork W4287571445 @default.
- W4313343321 hasRelatedWork W4313558727 @default.
- W4313343321 hasRelatedWork W4316087074 @default.
- W4313343321 isParatext "false" @default.
- W4313343321 isRetracted "false" @default.
- W4313343321 workType "book-chapter" @default.