Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313349043> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4313349043 endingPage "205" @default.
- W4313349043 startingPage "194" @default.
- W4313349043 abstract "Automatic defect detection is of great significance to the production process of modern industries, which will affect the product appearance and quality. And a great number of economic loss may be caused due to the defects in the industrial production process. Traditional manual defect inspection method is labor-intensive and time-consuming with subjective factors, and the detection performance is random and uncertain. Machine learning has shown a good detection ability on small-scale samples, but the detect detection task against with poor contrast, weak texture, etc., will affect the effective feature representation. To address the detection task of steel surface defects, combined with the strong context extraction ability of deep learning, an accurate deep defect classification network is proposed in the paper to provide an end-to-end detection scheme. Fused with the residual network (Resnet50) and spatial attention block, a residual attention network is proposed for effective feature representation, which could make the classification network better focus on the defect areas. Meanwhile, due to the scale information change among different defects, a multi-scale context fusion (MCF) block is proposed for effective multi-scale feature extraction, which is conducive for multi-scale object detection. Experimental results on public defect data set show that the proposed defect detection network could acquire a superior classification performance compared with some typical classification networks." @default.
- W4313349043 created "2023-01-06" @default.
- W4313349043 creator A5002006897 @default.
- W4313349043 creator A5048032713 @default.
- W4313349043 creator A5067356211 @default.
- W4313349043 creator A5067869982 @default.
- W4313349043 date "2022-01-01" @default.
- W4313349043 modified "2023-10-16" @default.
- W4313349043 title "An Automatic Surface Defect Detection Method with Residual Attention Network" @default.
- W4313349043 cites W2194775991 @default.
- W4313349043 cites W2752782242 @default.
- W4313349043 cites W2765854388 @default.
- W4313349043 cites W2980611806 @default.
- W4313349043 cites W3015382364 @default.
- W4313349043 cites W3025505824 @default.
- W4313349043 cites W3043445295 @default.
- W4313349043 cites W3138118886 @default.
- W4313349043 cites W3138786441 @default.
- W4313349043 cites W3161081823 @default.
- W4313349043 cites W3207184779 @default.
- W4313349043 cites W3211350522 @default.
- W4313349043 cites W4213338244 @default.
- W4313349043 cites W4226063514 @default.
- W4313349043 cites W4226416337 @default.
- W4313349043 doi "https://doi.org/10.1007/978-3-031-20500-2_16" @default.
- W4313349043 hasPublicationYear "2022" @default.
- W4313349043 type Work @default.
- W4313349043 citedByCount "0" @default.
- W4313349043 crossrefType "book-chapter" @default.
- W4313349043 hasAuthorship W4313349043A5002006897 @default.
- W4313349043 hasAuthorship W4313349043A5048032713 @default.
- W4313349043 hasAuthorship W4313349043A5067356211 @default.
- W4313349043 hasAuthorship W4313349043A5067869982 @default.
- W4313349043 hasConcept C111919701 @default.
- W4313349043 hasConcept C11413529 @default.
- W4313349043 hasConcept C119857082 @default.
- W4313349043 hasConcept C124101348 @default.
- W4313349043 hasConcept C127413603 @default.
- W4313349043 hasConcept C138885662 @default.
- W4313349043 hasConcept C151730666 @default.
- W4313349043 hasConcept C153180895 @default.
- W4313349043 hasConcept C154945302 @default.
- W4313349043 hasConcept C155512373 @default.
- W4313349043 hasConcept C201995342 @default.
- W4313349043 hasConcept C2524010 @default.
- W4313349043 hasConcept C2776151529 @default.
- W4313349043 hasConcept C2776401178 @default.
- W4313349043 hasConcept C2777210771 @default.
- W4313349043 hasConcept C2779343474 @default.
- W4313349043 hasConcept C2780451532 @default.
- W4313349043 hasConcept C33923547 @default.
- W4313349043 hasConcept C41008148 @default.
- W4313349043 hasConcept C41895202 @default.
- W4313349043 hasConcept C52622490 @default.
- W4313349043 hasConcept C86803240 @default.
- W4313349043 hasConcept C98045186 @default.
- W4313349043 hasConceptScore W4313349043C111919701 @default.
- W4313349043 hasConceptScore W4313349043C11413529 @default.
- W4313349043 hasConceptScore W4313349043C119857082 @default.
- W4313349043 hasConceptScore W4313349043C124101348 @default.
- W4313349043 hasConceptScore W4313349043C127413603 @default.
- W4313349043 hasConceptScore W4313349043C138885662 @default.
- W4313349043 hasConceptScore W4313349043C151730666 @default.
- W4313349043 hasConceptScore W4313349043C153180895 @default.
- W4313349043 hasConceptScore W4313349043C154945302 @default.
- W4313349043 hasConceptScore W4313349043C155512373 @default.
- W4313349043 hasConceptScore W4313349043C201995342 @default.
- W4313349043 hasConceptScore W4313349043C2524010 @default.
- W4313349043 hasConceptScore W4313349043C2776151529 @default.
- W4313349043 hasConceptScore W4313349043C2776401178 @default.
- W4313349043 hasConceptScore W4313349043C2777210771 @default.
- W4313349043 hasConceptScore W4313349043C2779343474 @default.
- W4313349043 hasConceptScore W4313349043C2780451532 @default.
- W4313349043 hasConceptScore W4313349043C33923547 @default.
- W4313349043 hasConceptScore W4313349043C41008148 @default.
- W4313349043 hasConceptScore W4313349043C41895202 @default.
- W4313349043 hasConceptScore W4313349043C52622490 @default.
- W4313349043 hasConceptScore W4313349043C86803240 @default.
- W4313349043 hasConceptScore W4313349043C98045186 @default.
- W4313349043 hasLocation W43133490431 @default.
- W4313349043 hasOpenAccess W4313349043 @default.
- W4313349043 hasPrimaryLocation W43133490431 @default.
- W4313349043 hasRelatedWork W2016461833 @default.
- W4313349043 hasRelatedWork W2059299633 @default.
- W4313349043 hasRelatedWork W2132943804 @default.
- W4313349043 hasRelatedWork W2144059113 @default.
- W4313349043 hasRelatedWork W2146076056 @default.
- W4313349043 hasRelatedWork W2382607599 @default.
- W4313349043 hasRelatedWork W2811390910 @default.
- W4313349043 hasRelatedWork W3136978019 @default.
- W4313349043 hasRelatedWork W3197541072 @default.
- W4313349043 hasRelatedWork W4295357754 @default.
- W4313349043 isParatext "false" @default.
- W4313349043 isRetracted "false" @default.
- W4313349043 workType "book-chapter" @default.