Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313349116> ?p ?o ?g. }
- W4313349116 endingPage "78" @default.
- W4313349116 startingPage "67" @default.
- W4313349116 abstract "Partitioning a network into k pieces is a fundamental problem in network science. A simple measure of partitioning a network is provided by the Max k -Uncut problem. Given an n-vertex undirected graph G with nonnegative weights defined on edges, and a positive integer k, the Max k -Uncut problem asks to find a k-partition of the vertices of G to maximize the total weight of edges that are not in the cut. This problem is the complement of the classic Min k -Cut problem, and has close relation to many combinatorial optimization problems, including the famous Densest k -Subgraph problem. In this paper, we propose a greedy approximation algorithm for the Max k -Uncut problem with performance ratio $$1-frac{2(k-1)}{n}$$ . The algorithm is very simple, which consists of only $$k-1$$ min cut computations. The algorithm has fast running time $$O(kn^2)$$ and is hence implementable. The experimental results show that the algorithm has excellent practical performance." @default.
- W4313349116 created "2023-01-06" @default.
- W4313349116 creator A5014239192 @default.
- W4313349116 creator A5032253553 @default.
- W4313349116 creator A5061920098 @default.
- W4313349116 date "2022-01-01" @default.
- W4313349116 modified "2023-09-26" @default.
- W4313349116 title "New Algorithms for a Simple Measure of Network Partitioning" @default.
- W4313349116 cites W1164874588 @default.
- W4313349116 cites W1498543354 @default.
- W4313349116 cites W1567984060 @default.
- W4313349116 cites W1601503375 @default.
- W4313349116 cites W1913738529 @default.
- W4313349116 cites W1965734368 @default.
- W4313349116 cites W1971421925 @default.
- W4313349116 cites W1971937094 @default.
- W4313349116 cites W1985123706 @default.
- W4313349116 cites W2030365814 @default.
- W4313349116 cites W2057463094 @default.
- W4313349116 cites W2073583237 @default.
- W4313349116 cites W2095293504 @default.
- W4313349116 cites W2109726592 @default.
- W4313349116 cites W2122466336 @default.
- W4313349116 cites W2125315567 @default.
- W4313349116 cites W2127114399 @default.
- W4313349116 cites W2132202037 @default.
- W4313349116 cites W2139841919 @default.
- W4313349116 cites W2150593711 @default.
- W4313349116 cites W2151936673 @default.
- W4313349116 cites W2167637346 @default.
- W4313349116 cites W2169649212 @default.
- W4313349116 cites W2199495299 @default.
- W4313349116 cites W2243791129 @default.
- W4313349116 cites W2338678442 @default.
- W4313349116 cites W2565644440 @default.
- W4313349116 cites W2754777885 @default.
- W4313349116 cites W2885386724 @default.
- W4313349116 cites W2900685636 @default.
- W4313349116 cites W2963737091 @default.
- W4313349116 cites W2974294792 @default.
- W4313349116 cites W3081564245 @default.
- W4313349116 cites W3092242673 @default.
- W4313349116 cites W3093638304 @default.
- W4313349116 cites W4206097482 @default.
- W4313349116 doi "https://doi.org/10.1007/978-3-031-20350-3_7" @default.
- W4313349116 hasPublicationYear "2022" @default.
- W4313349116 type Work @default.
- W4313349116 citedByCount "0" @default.
- W4313349116 crossrefType "book-chapter" @default.
- W4313349116 hasAuthorship W4313349116A5014239192 @default.
- W4313349116 hasAuthorship W4313349116A5032253553 @default.
- W4313349116 hasAuthorship W4313349116A5061920098 @default.
- W4313349116 hasConcept C104317684 @default.
- W4313349116 hasConcept C111472728 @default.
- W4313349116 hasConcept C112313634 @default.
- W4313349116 hasConcept C11413529 @default.
- W4313349116 hasConcept C114614502 @default.
- W4313349116 hasConcept C118615104 @default.
- W4313349116 hasConcept C127716648 @default.
- W4313349116 hasConcept C132525143 @default.
- W4313349116 hasConcept C138885662 @default.
- W4313349116 hasConcept C185592680 @default.
- W4313349116 hasConcept C188082640 @default.
- W4313349116 hasConcept C199360897 @default.
- W4313349116 hasConcept C2778945305 @default.
- W4313349116 hasConcept C2780009758 @default.
- W4313349116 hasConcept C2780586882 @default.
- W4313349116 hasConcept C3017489831 @default.
- W4313349116 hasConcept C3018234147 @default.
- W4313349116 hasConcept C33923547 @default.
- W4313349116 hasConcept C41008148 @default.
- W4313349116 hasConcept C42812 @default.
- W4313349116 hasConcept C45374587 @default.
- W4313349116 hasConcept C48903430 @default.
- W4313349116 hasConcept C51823790 @default.
- W4313349116 hasConcept C55493867 @default.
- W4313349116 hasConcept C77088390 @default.
- W4313349116 hasConcept C80899671 @default.
- W4313349116 hasConcept C97137487 @default.
- W4313349116 hasConceptScore W4313349116C104317684 @default.
- W4313349116 hasConceptScore W4313349116C111472728 @default.
- W4313349116 hasConceptScore W4313349116C112313634 @default.
- W4313349116 hasConceptScore W4313349116C11413529 @default.
- W4313349116 hasConceptScore W4313349116C114614502 @default.
- W4313349116 hasConceptScore W4313349116C118615104 @default.
- W4313349116 hasConceptScore W4313349116C127716648 @default.
- W4313349116 hasConceptScore W4313349116C132525143 @default.
- W4313349116 hasConceptScore W4313349116C138885662 @default.
- W4313349116 hasConceptScore W4313349116C185592680 @default.
- W4313349116 hasConceptScore W4313349116C188082640 @default.
- W4313349116 hasConceptScore W4313349116C199360897 @default.
- W4313349116 hasConceptScore W4313349116C2778945305 @default.
- W4313349116 hasConceptScore W4313349116C2780009758 @default.
- W4313349116 hasConceptScore W4313349116C2780586882 @default.
- W4313349116 hasConceptScore W4313349116C3017489831 @default.
- W4313349116 hasConceptScore W4313349116C3018234147 @default.
- W4313349116 hasConceptScore W4313349116C33923547 @default.
- W4313349116 hasConceptScore W4313349116C41008148 @default.