Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313349153> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4313349153 endingPage "50" @default.
- W4313349153 startingPage "34" @default.
- W4313349153 abstract "The use of kernel learning methods in large-scale contexts is still today rather limited. Indeed in this case, the memory and computing footprint of the kernel matrix can be a constraining factor. Among these methods, Kernel Discriminant Analysis (KDA) is no exception to this rule. In this paper, we present a new learning strategy to solve this issue. Instead of entrusting the entire learning task to a single classifier, we propose to share it with an ensemble of classifiers with a limited storage capacity. Our contribution relies on several points: firstly, our ensemble learning algorithm is “dynamic”, i.e. a new classifier is initialized when the previous one has an overflow of its rated capacity. Secondly, a compression strategy is proposed after each learning step in order to minimize the number of classifiers generated during the learning process. based on the overall classification cost of the network allows to reduce the size of the kernel matrix build in the last layer. To our knowledge, this strategy of collaboration between classifiers is new and allows to share the computational and storage burden between several classifiers while insuring the compression of the kernel matrix. In our study, our network will be based on the spectral regression kernel discriminant analysis (SRKDA) which is an efficient multi-class classifier. Extensive experiments on several large-scale data sets show the effectiveness of the proposed algorithm." @default.
- W4313349153 created "2023-01-06" @default.
- W4313349153 creator A5001483656 @default.
- W4313349153 creator A5011451470 @default.
- W4313349153 creator A5077895416 @default.
- W4313349153 creator A5084523165 @default.
- W4313349153 date "2022-01-01" @default.
- W4313349153 modified "2023-10-16" @default.
- W4313349153 title "Collaborative Kernel Discriminant Analysis for Large Scale Multi Class Problems" @default.
- W4313349153 cites W1999785771 @default.
- W4313349153 cites W2024046085 @default.
- W4313349153 cites W2081604642 @default.
- W4313349153 cites W2085044339 @default.
- W4313349153 cites W2088424151 @default.
- W4313349153 cites W2105628133 @default.
- W4313349153 cites W2112796928 @default.
- W4313349153 cites W2128532956 @default.
- W4313349153 cites W2138963285 @default.
- W4313349153 cites W2602516395 @default.
- W4313349153 cites W2738729948 @default.
- W4313349153 cites W2911964244 @default.
- W4313349153 cites W2953425061 @default.
- W4313349153 cites W2999200667 @default.
- W4313349153 cites W3006333400 @default.
- W4313349153 cites W3082059448 @default.
- W4313349153 cites W3199667853 @default.
- W4313349153 cites W4220929384 @default.
- W4313349153 cites W4243228919 @default.
- W4313349153 doi "https://doi.org/10.1007/978-3-031-20490-6_4" @default.
- W4313349153 hasPublicationYear "2022" @default.
- W4313349153 type Work @default.
- W4313349153 citedByCount "0" @default.
- W4313349153 crossrefType "book-chapter" @default.
- W4313349153 hasAuthorship W4313349153A5001483656 @default.
- W4313349153 hasAuthorship W4313349153A5011451470 @default.
- W4313349153 hasAuthorship W4313349153A5077895416 @default.
- W4313349153 hasAuthorship W4313349153A5084523165 @default.
- W4313349153 hasConcept C114614502 @default.
- W4313349153 hasConcept C119857082 @default.
- W4313349153 hasConcept C122280245 @default.
- W4313349153 hasConcept C12267149 @default.
- W4313349153 hasConcept C124101348 @default.
- W4313349153 hasConcept C153180895 @default.
- W4313349153 hasConcept C154945302 @default.
- W4313349153 hasConcept C181367576 @default.
- W4313349153 hasConcept C33923547 @default.
- W4313349153 hasConcept C41008148 @default.
- W4313349153 hasConcept C45942800 @default.
- W4313349153 hasConcept C69738355 @default.
- W4313349153 hasConcept C74193536 @default.
- W4313349153 hasConcept C78397625 @default.
- W4313349153 hasConcept C95623464 @default.
- W4313349153 hasConceptScore W4313349153C114614502 @default.
- W4313349153 hasConceptScore W4313349153C119857082 @default.
- W4313349153 hasConceptScore W4313349153C122280245 @default.
- W4313349153 hasConceptScore W4313349153C12267149 @default.
- W4313349153 hasConceptScore W4313349153C124101348 @default.
- W4313349153 hasConceptScore W4313349153C153180895 @default.
- W4313349153 hasConceptScore W4313349153C154945302 @default.
- W4313349153 hasConceptScore W4313349153C181367576 @default.
- W4313349153 hasConceptScore W4313349153C33923547 @default.
- W4313349153 hasConceptScore W4313349153C41008148 @default.
- W4313349153 hasConceptScore W4313349153C45942800 @default.
- W4313349153 hasConceptScore W4313349153C69738355 @default.
- W4313349153 hasConceptScore W4313349153C74193536 @default.
- W4313349153 hasConceptScore W4313349153C78397625 @default.
- W4313349153 hasConceptScore W4313349153C95623464 @default.
- W4313349153 hasLocation W43133491531 @default.
- W4313349153 hasOpenAccess W4313349153 @default.
- W4313349153 hasPrimaryLocation W43133491531 @default.
- W4313349153 hasRelatedWork W106644942 @default.
- W4313349153 hasRelatedWork W2064257630 @default.
- W4313349153 hasRelatedWork W2067378131 @default.
- W4313349153 hasRelatedWork W2086055175 @default.
- W4313349153 hasRelatedWork W2104912729 @default.
- W4313349153 hasRelatedWork W2129407254 @default.
- W4313349153 hasRelatedWork W2371167124 @default.
- W4313349153 hasRelatedWork W2386228546 @default.
- W4313349153 hasRelatedWork W2538559652 @default.
- W4313349153 hasRelatedWork W3145966574 @default.
- W4313349153 isParatext "false" @default.
- W4313349153 isRetracted "false" @default.
- W4313349153 workType "book-chapter" @default.