Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313352145> ?p ?o ?g. }
- W4313352145 endingPage "4639" @default.
- W4313352145 startingPage "4620" @default.
- W4313352145 abstract "Abstract Intelligent fault diagnosis method is an important tool for ensuring the stability of industrial processes. However, in the actual industrial process, forming a fault diagnosis model with good performance is difficult because of the complexity of feature extraction and the lack of labelled fault data. Data enhancement on the basis of the original data is important. To address this problem, this study proposes a method called self‐attention embedded generative adversarial network combined with a residual network (SAGAN‐ResNet). First, to address the lack of fault data, the data augmentation method consisting of the self‐attention embedded generator and discriminator is adopted. Then, to extract the features for better diagnosis performance, the residual network (ResNet) is introduced based on the augmented training dataset. A comparison of the proposed method with others shows that it has advantages in the case of complex process fault diagnosis with few‐shot industrial data." @default.
- W4313352145 created "2023-01-06" @default.
- W4313352145 creator A5017744928 @default.
- W4313352145 creator A5034872054 @default.
- W4313352145 creator A5052930248 @default.
- W4313352145 creator A5067183406 @default.
- W4313352145 creator A5076699095 @default.
- W4313352145 date "2023-01-26" @default.
- W4313352145 modified "2023-10-17" @default.
- W4313352145 title "Fault diagnosis strategy for few shot industrial process based on data augmentation and depth information extraction" @default.
- W4313352145 cites W2034840616 @default.
- W4313352145 cites W2176583664 @default.
- W4313352145 cites W2528305538 @default.
- W4313352145 cites W2589808763 @default.
- W4313352145 cites W2794022343 @default.
- W4313352145 cites W2803411155 @default.
- W4313352145 cites W2803937758 @default.
- W4313352145 cites W2805797750 @default.
- W4313352145 cites W2893104611 @default.
- W4313352145 cites W2893747136 @default.
- W4313352145 cites W2898597600 @default.
- W4313352145 cites W2899360057 @default.
- W4313352145 cites W2910881901 @default.
- W4313352145 cites W2947274212 @default.
- W4313352145 cites W2965530319 @default.
- W4313352145 cites W2970865410 @default.
- W4313352145 cites W2991319018 @default.
- W4313352145 cites W2995524811 @default.
- W4313352145 cites W3128775465 @default.
- W4313352145 cites W3164808429 @default.
- W4313352145 cites W3165172781 @default.
- W4313352145 cites W3166805494 @default.
- W4313352145 cites W3168995832 @default.
- W4313352145 cites W3177431918 @default.
- W4313352145 cites W4205500943 @default.
- W4313352145 cites W4224072281 @default.
- W4313352145 doi "https://doi.org/10.1002/cjce.24818" @default.
- W4313352145 hasPublicationYear "2023" @default.
- W4313352145 type Work @default.
- W4313352145 citedByCount "0" @default.
- W4313352145 crossrefType "journal-article" @default.
- W4313352145 hasAuthorship W4313352145A5017744928 @default.
- W4313352145 hasAuthorship W4313352145A5034872054 @default.
- W4313352145 hasAuthorship W4313352145A5052930248 @default.
- W4313352145 hasAuthorship W4313352145A5067183406 @default.
- W4313352145 hasAuthorship W4313352145A5076699095 @default.
- W4313352145 hasConcept C111919701 @default.
- W4313352145 hasConcept C11413529 @default.
- W4313352145 hasConcept C119857082 @default.
- W4313352145 hasConcept C121332964 @default.
- W4313352145 hasConcept C124101348 @default.
- W4313352145 hasConcept C127313418 @default.
- W4313352145 hasConcept C152745839 @default.
- W4313352145 hasConcept C153180895 @default.
- W4313352145 hasConcept C154945302 @default.
- W4313352145 hasConcept C155512373 @default.
- W4313352145 hasConcept C163258240 @default.
- W4313352145 hasConcept C165205528 @default.
- W4313352145 hasConcept C172707124 @default.
- W4313352145 hasConcept C175551986 @default.
- W4313352145 hasConcept C2779803651 @default.
- W4313352145 hasConcept C2780992000 @default.
- W4313352145 hasConcept C41008148 @default.
- W4313352145 hasConcept C52622490 @default.
- W4313352145 hasConcept C62520636 @default.
- W4313352145 hasConcept C76155785 @default.
- W4313352145 hasConcept C94915269 @default.
- W4313352145 hasConcept C98045186 @default.
- W4313352145 hasConceptScore W4313352145C111919701 @default.
- W4313352145 hasConceptScore W4313352145C11413529 @default.
- W4313352145 hasConceptScore W4313352145C119857082 @default.
- W4313352145 hasConceptScore W4313352145C121332964 @default.
- W4313352145 hasConceptScore W4313352145C124101348 @default.
- W4313352145 hasConceptScore W4313352145C127313418 @default.
- W4313352145 hasConceptScore W4313352145C152745839 @default.
- W4313352145 hasConceptScore W4313352145C153180895 @default.
- W4313352145 hasConceptScore W4313352145C154945302 @default.
- W4313352145 hasConceptScore W4313352145C155512373 @default.
- W4313352145 hasConceptScore W4313352145C163258240 @default.
- W4313352145 hasConceptScore W4313352145C165205528 @default.
- W4313352145 hasConceptScore W4313352145C172707124 @default.
- W4313352145 hasConceptScore W4313352145C175551986 @default.
- W4313352145 hasConceptScore W4313352145C2779803651 @default.
- W4313352145 hasConceptScore W4313352145C2780992000 @default.
- W4313352145 hasConceptScore W4313352145C41008148 @default.
- W4313352145 hasConceptScore W4313352145C52622490 @default.
- W4313352145 hasConceptScore W4313352145C62520636 @default.
- W4313352145 hasConceptScore W4313352145C76155785 @default.
- W4313352145 hasConceptScore W4313352145C94915269 @default.
- W4313352145 hasConceptScore W4313352145C98045186 @default.
- W4313352145 hasFunder F4320321001 @default.
- W4313352145 hasIssue "8" @default.
- W4313352145 hasLocation W43133521451 @default.
- W4313352145 hasOpenAccess W4313352145 @default.
- W4313352145 hasPrimaryLocation W43133521451 @default.
- W4313352145 hasRelatedWork W2554314924 @default.
- W4313352145 hasRelatedWork W2618858825 @default.
- W4313352145 hasRelatedWork W2953246223 @default.