Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313352188> ?p ?o ?g. }
- W4313352188 endingPage "1165" @default.
- W4313352188 startingPage "1150" @default.
- W4313352188 abstract "The widespread use of the Internet and the increase in the number and variety of devices connected to the internet have led to the emergence of new methods in wireless communication. Dynamic and temporary Ad-Hoc networks, which do not require a fixed infrastructure as in traditional wireless network communication, are one of these new methods. The fact that Ad-Hoc networks do not need a fixed infrastructure has revealed a network structure with a lower cost and less configuration. Mobile Ad-Hoc networks play an important role, especially in the communication of nodes on the move. FANET (Flying Ad-Hoc Networks) networks, which are called flying ad hoc networks, are mobile Ad-Hoc networks used for communication of unmanned aerial vehicles (UAV), and VANET (Vehicular Ad-Hoc Networks) networks, which are called vehicular ad hoc networks, are mobile Ad-Hoc networks used for communication of road vehicles. The development and dissemination of these networks make a significant contribution to the development of autonomous vehicles and UAVs. The increase in the use of FANET and VANET networks, which are specialized subnets of mobile Ad-Hoc networks, and the increase in the number of nodes in these networks have caused problems related to security, efficiency, and sustainability in these networks. Machine learning methods, one of today' s effective and common approaches, are one of the ways that are frequently used in solving the problems specified in FANET and VANET networks. The rapid topology change, which is one of the most important features of these networks, makes it difficult to provide traffic management, trust management, routing, and data transmission. In this direction, machine learning approaches play an active role. In this study, it is presented by examining which machine learning techniques are used in the literature to perform important tasks such as traffic management, trust management, routing, and data transfer. Thus, it is aimed for those who will work in these fields to acquire information about machine learning approaches that can be used. Since the FANET network type is a new approach, it has been observed that there are few studies using machine learning. In VANET systems, studies using machine learning methods are especially intense in 2021. This study was carried out to give the reader an idea about which machine learning methods can be used in which problems in FANET and VANET networks." @default.
- W4313352188 created "2023-01-06" @default.
- W4313352188 creator A5040553694 @default.
- W4313352188 creator A5049562823 @default.
- W4313352188 date "2022-12-31" @default.
- W4313352188 modified "2023-09-27" @default.
- W4313352188 title "A Review on Machine Learning Techniques Used in VANET and FANET Networks" @default.
- W4313352188 cites W1123412569 @default.
- W4313352188 cites W1598001719 @default.
- W4313352188 cites W2488051804 @default.
- W4313352188 cites W2912162950 @default.
- W4313352188 cites W2958918608 @default.
- W4313352188 cites W2973861572 @default.
- W4313352188 cites W2990574056 @default.
- W4313352188 cites W2997159099 @default.
- W4313352188 cites W3010832408 @default.
- W4313352188 cites W3011470333 @default.
- W4313352188 cites W3013290174 @default.
- W4313352188 cites W3015257207 @default.
- W4313352188 cites W3015875647 @default.
- W4313352188 cites W3025023469 @default.
- W4313352188 cites W3035389810 @default.
- W4313352188 cites W3045918422 @default.
- W4313352188 cites W3083693648 @default.
- W4313352188 cites W3092488419 @default.
- W4313352188 cites W3107811227 @default.
- W4313352188 cites W3115044344 @default.
- W4313352188 cites W3127286946 @default.
- W4313352188 cites W3130106680 @default.
- W4313352188 cites W3132221436 @default.
- W4313352188 cites W3133185215 @default.
- W4313352188 cites W3138364297 @default.
- W4313352188 cites W3139173940 @default.
- W4313352188 cites W3139312002 @default.
- W4313352188 cites W3159693703 @default.
- W4313352188 cites W3170475622 @default.
- W4313352188 cites W3171656447 @default.
- W4313352188 cites W3172693615 @default.
- W4313352188 cites W3186748362 @default.
- W4313352188 cites W3186975389 @default.
- W4313352188 cites W3187296755 @default.
- W4313352188 cites W3191314598 @default.
- W4313352188 cites W3192293295 @default.
- W4313352188 cites W3194716133 @default.
- W4313352188 cites W3196690723 @default.
- W4313352188 cites W3199200346 @default.
- W4313352188 cites W3199481472 @default.
- W4313352188 cites W3199959799 @default.
- W4313352188 cites W3206599325 @default.
- W4313352188 cites W3207020565 @default.
- W4313352188 cites W3209296683 @default.
- W4313352188 cites W3209536146 @default.
- W4313352188 cites W3210466274 @default.
- W4313352188 cites W3210949517 @default.
- W4313352188 doi "https://doi.org/10.35193/bseufbd.1102897" @default.
- W4313352188 hasPublicationYear "2022" @default.
- W4313352188 type Work @default.
- W4313352188 citedByCount "0" @default.
- W4313352188 crossrefType "journal-article" @default.
- W4313352188 hasAuthorship W4313352188A5040553694 @default.
- W4313352188 hasAuthorship W4313352188A5049562823 @default.
- W4313352188 hasBestOaLocation W43133521881 @default.
- W4313352188 hasConcept C108037233 @default.
- W4313352188 hasConcept C108207678 @default.
- W4313352188 hasConcept C120314980 @default.
- W4313352188 hasConcept C158379750 @default.
- W4313352188 hasConcept C190526755 @default.
- W4313352188 hasConcept C192448918 @default.
- W4313352188 hasConcept C204739117 @default.
- W4313352188 hasConcept C31258907 @default.
- W4313352188 hasConcept C32244324 @default.
- W4313352188 hasConcept C41008148 @default.
- W4313352188 hasConcept C555944384 @default.
- W4313352188 hasConcept C76155785 @default.
- W4313352188 hasConcept C91280400 @default.
- W4313352188 hasConcept C94523657 @default.
- W4313352188 hasConceptScore W4313352188C108037233 @default.
- W4313352188 hasConceptScore W4313352188C108207678 @default.
- W4313352188 hasConceptScore W4313352188C120314980 @default.
- W4313352188 hasConceptScore W4313352188C158379750 @default.
- W4313352188 hasConceptScore W4313352188C190526755 @default.
- W4313352188 hasConceptScore W4313352188C192448918 @default.
- W4313352188 hasConceptScore W4313352188C204739117 @default.
- W4313352188 hasConceptScore W4313352188C31258907 @default.
- W4313352188 hasConceptScore W4313352188C32244324 @default.
- W4313352188 hasConceptScore W4313352188C41008148 @default.
- W4313352188 hasConceptScore W4313352188C555944384 @default.
- W4313352188 hasConceptScore W4313352188C76155785 @default.
- W4313352188 hasConceptScore W4313352188C91280400 @default.
- W4313352188 hasConceptScore W4313352188C94523657 @default.
- W4313352188 hasIssue "2" @default.
- W4313352188 hasLocation W43133521881 @default.
- W4313352188 hasLocation W43133521882 @default.
- W4313352188 hasOpenAccess W4313352188 @default.
- W4313352188 hasPrimaryLocation W43133521881 @default.
- W4313352188 hasRelatedWork W2074758130 @default.
- W4313352188 hasRelatedWork W2120569933 @default.
- W4313352188 hasRelatedWork W2171926540 @default.