Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313357206> ?p ?o ?g. }
- W4313357206 endingPage "807" @default.
- W4313357206 startingPage "775" @default.
- W4313357206 abstract "Detecting Bug Inducing Commit (BIC) or Just in Time (JIT) defect prediction using Machine Learning (ML) based models requires tabulated feature values extracted from the source code or historical maintenance data of a software system. Existing studies have utilized meta-data from source code repositories (we named them GitHub Statistics or GS), n-gram-based source code text processing, and developer’s information (e.g., the experience of a developer) as the feature values in ML-based bug detection models. However, these feature values do not represent the source code syntax styles or patterns that a developer might prefer over available valid alternatives provided by programming languages. This investigation proposed a method to extract features from its source code syntax patterns to represent software commits and investigate whether they are helpful in detecting bug proneness in software systems. We utilize six manually and two automatically labeled datasets from eight open-source software projects written in Java, C++, and Python programming languages. Our datasets contain 642 manually labeled and 4014 automatically labeled buggy and non-buggy commits from six and two subject systems, respectively. The subject systems contain a diverse number of revisions, and they are from various application domains. Our investigation shows the inclusion of the proposed features increases the performance of detecting buggy and non-buggy software commits using five different machine learning classification models. Our proposed features also perform better in detecting buggy commits using the Deep Belief Network generated features and classification model. This investigation also implemented a state-of-the-art tool to compare the explainability of predicted buggy commits using our proposed and traditional features and found that our proposed features provide better reasoning about buggy commit detection compared to the traditional features. The continuation of this study can lead us to enhance software effectiveness by identifying, minimizing, and fixing software bugs during its maintenance and evolution." @default.
- W4313357206 created "2023-01-06" @default.
- W4313357206 creator A5015470184 @default.
- W4313357206 creator A5037696469 @default.
- W4313357206 date "2022-12-31" @default.
- W4313357206 modified "2023-09-26" @default.
- W4313357206 title "Utilizing source code syntax patterns to detect bug inducing commits using machine learning models" @default.
- W4313357206 cites W1655956671 @default.
- W4313357206 cites W1982980578 @default.
- W4313357206 cites W1984769753 @default.
- W4313357206 cites W1994248747 @default.
- W4313357206 cites W2000679946 @default.
- W4313357206 cites W2010312922 @default.
- W4313357206 cites W2024920205 @default.
- W4313357206 cites W2029853454 @default.
- W4313357206 cites W2050496630 @default.
- W4313357206 cites W2057826716 @default.
- W4313357206 cites W2065314038 @default.
- W4313357206 cites W2090853796 @default.
- W4313357206 cites W2091543666 @default.
- W4313357206 cites W2100495367 @default.
- W4313357206 cites W2104000753 @default.
- W4313357206 cites W2112890525 @default.
- W4313357206 cites W2124537004 @default.
- W4313357206 cites W2126166995 @default.
- W4313357206 cites W2136922672 @default.
- W4313357206 cites W2147386665 @default.
- W4313357206 cites W2150800057 @default.
- W4313357206 cites W2150874999 @default.
- W4313357206 cites W2151553346 @default.
- W4313357206 cites W2151666086 @default.
- W4313357206 cites W2153869077 @default.
- W4313357206 cites W2157353183 @default.
- W4313357206 cites W2162436321 @default.
- W4313357206 cites W2172061765 @default.
- W4313357206 cites W2276400542 @default.
- W4313357206 cites W2396685351 @default.
- W4313357206 cites W2515360277 @default.
- W4313357206 cites W2530824252 @default.
- W4313357206 cites W2597485909 @default.
- W4313357206 cites W2767527821 @default.
- W4313357206 cites W2767905745 @default.
- W4313357206 cites W2867448323 @default.
- W4313357206 cites W2883986603 @default.
- W4313357206 cites W2886117034 @default.
- W4313357206 cites W2888731859 @default.
- W4313357206 cites W2955555786 @default.
- W4313357206 cites W2955991060 @default.
- W4313357206 cites W2967204716 @default.
- W4313357206 cites W2972077015 @default.
- W4313357206 cites W2998011150 @default.
- W4313357206 cites W3013853519 @default.
- W4313357206 cites W3017210109 @default.
- W4313357206 cites W3089621332 @default.
- W4313357206 cites W3089692094 @default.
- W4313357206 cites W3090676906 @default.
- W4313357206 cites W3091176757 @default.
- W4313357206 cites W3101193405 @default.
- W4313357206 cites W3101506519 @default.
- W4313357206 cites W3102659406 @default.
- W4313357206 cites W3103145119 @default.
- W4313357206 cites W3105867435 @default.
- W4313357206 cites W3123680370 @default.
- W4313357206 cites W3128792537 @default.
- W4313357206 cites W3144363571 @default.
- W4313357206 cites W3175995826 @default.
- W4313357206 cites W3178061567 @default.
- W4313357206 cites W4206241418 @default.
- W4313357206 cites W4236586490 @default.
- W4313357206 cites W4247032699 @default.
- W4313357206 cites W4252684946 @default.
- W4313357206 cites W4255632703 @default.
- W4313357206 cites W4256027430 @default.
- W4313357206 cites W4308067211 @default.
- W4313357206 cites W82132563 @default.
- W4313357206 doi "https://doi.org/10.1007/s11219-022-09611-3" @default.
- W4313357206 hasPublicationYear "2022" @default.
- W4313357206 type Work @default.
- W4313357206 citedByCount "0" @default.
- W4313357206 crossrefType "journal-article" @default.
- W4313357206 hasAuthorship W4313357206A5015470184 @default.
- W4313357206 hasAuthorship W4313357206A5037696469 @default.
- W4313357206 hasBestOaLocation W43133572062 @default.
- W4313357206 hasConcept C1009929 @default.
- W4313357206 hasConcept C114408938 @default.
- W4313357206 hasConcept C119857082 @default.
- W4313357206 hasConcept C138885662 @default.
- W4313357206 hasConcept C149091818 @default.
- W4313357206 hasConcept C153180980 @default.
- W4313357206 hasConcept C154945302 @default.
- W4313357206 hasConcept C199360897 @default.
- W4313357206 hasConcept C204321447 @default.
- W4313357206 hasConcept C2776401178 @default.
- W4313357206 hasConcept C2777904410 @default.
- W4313357206 hasConcept C41008148 @default.
- W4313357206 hasConcept C41895202 @default.
- W4313357206 hasConcept C43126263 @default.
- W4313357206 hasConcept C519991488 @default.