Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313357265> ?p ?o ?g. }
- W4313357265 abstract "Drought, rising demand for water, declining water resources, and mismanagement have put society at serious risk. Therefore, it is essential to provide appropriate solutions to increase water productivity (WP). As an element of research, this study presents a hybrid machine learning approach and investigates its potential for estimating date palm crop yield and WP under different levels of subsurface drip irrigation (SDI). The amount of applied water in the SDI system was compared at three levels of 125% (T1), 100% (T2), and 75% (T3) of water requirement. The proposed ACVO-ANFIS approach is composed of an anti-coronavirus optimization algorithm (ACVO) and an adaptive neuro-fuzzy inference system (ANFIS). Since the effect of irrigation factors, climate, and crop characteristics are not equal in estimating the WP and yield, the importance of these factors should be measured in the estimation phase. To fulfill this aim, ACVO-ANFIS employed eight different feature combination models based on irrigation factors, climate, and crop characteristics. The proposed approach was evaluated on a benchmark dataset that contains information about the groves of Behbahan agricultural research station located in southeast Khuzestan, Iran. The results explained that the treatment T3 advanced data palm crop yield by 3.91 and 1.31%, and WP by 35.50 and 20.40 kg/m3, corresponding to T1 and T2 treatments, respectively. The amount of applied water in treatment T3 was 7528.80 m3/ha, which suggests a decrease of 5019.20 and 2509.6 m3/ha of applied water compared to the T1 and T2 treatments. The modeling results of the ACVO-ANFIS approach using a model with factors of crop variety, irrigation (75% water requirement of SDI system), and effective rainfall achieved RMSE = 0.005, δ = 0.603, and AICC = 183.25. The results confirmed that the ACVO-ANFIS outperformed its counterparts in terms of performance criteria." @default.
- W4313357265 created "2023-01-06" @default.
- W4313357265 creator A5017384904 @default.
- W4313357265 creator A5025175721 @default.
- W4313357265 creator A5039658757 @default.
- W4313357265 creator A5047494871 @default.
- W4313357265 creator A5076497763 @default.
- W4313357265 date "2022-12-30" @default.
- W4313357265 modified "2023-10-16" @default.
- W4313357265 title "An intelligent approach to improve date palm crop yield and water productivity under different irrigation and climate scenarios" @default.
- W4313357265 cites W1908616396 @default.
- W4313357265 cites W1984680394 @default.
- W4313357265 cites W2019207321 @default.
- W4313357265 cites W2020116326 @default.
- W4313357265 cites W2054459031 @default.
- W4313357265 cites W2069346125 @default.
- W4313357265 cites W2111155475 @default.
- W4313357265 cites W2116905012 @default.
- W4313357265 cites W2159120868 @default.
- W4313357265 cites W2416782259 @default.
- W4313357265 cites W2496286133 @default.
- W4313357265 cites W2585302824 @default.
- W4313357265 cites W2587626812 @default.
- W4313357265 cites W2591677346 @default.
- W4313357265 cites W2886893301 @default.
- W4313357265 cites W2942025903 @default.
- W4313357265 cites W2980103399 @default.
- W4313357265 cites W2985491024 @default.
- W4313357265 cites W2997232377 @default.
- W4313357265 cites W3014678155 @default.
- W4313357265 cites W3017083026 @default.
- W4313357265 cites W3045046752 @default.
- W4313357265 cites W3047562107 @default.
- W4313357265 cites W3081356264 @default.
- W4313357265 cites W3156251368 @default.
- W4313357265 cites W3159310484 @default.
- W4313357265 cites W3171809304 @default.
- W4313357265 cites W3174528638 @default.
- W4313357265 cites W3210171941 @default.
- W4313357265 cites W3213493966 @default.
- W4313357265 cites W4200423388 @default.
- W4313357265 cites W4214740757 @default.
- W4313357265 cites W4220918461 @default.
- W4313357265 cites W4220971497 @default.
- W4313357265 cites W4221025993 @default.
- W4313357265 doi "https://doi.org/10.1007/s13201-022-01836-8" @default.
- W4313357265 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36597441" @default.
- W4313357265 hasPublicationYear "2022" @default.
- W4313357265 type Work @default.
- W4313357265 citedByCount "0" @default.
- W4313357265 crossrefType "journal-article" @default.
- W4313357265 hasAuthorship W4313357265A5017384904 @default.
- W4313357265 hasAuthorship W4313357265A5025175721 @default.
- W4313357265 hasAuthorship W4313357265A5039658757 @default.
- W4313357265 hasAuthorship W4313357265A5047494871 @default.
- W4313357265 hasAuthorship W4313357265A5076497763 @default.
- W4313357265 hasBestOaLocation W43133572651 @default.
- W4313357265 hasConcept C118518473 @default.
- W4313357265 hasConcept C121332964 @default.
- W4313357265 hasConcept C126343540 @default.
- W4313357265 hasConcept C127413603 @default.
- W4313357265 hasConcept C134121241 @default.
- W4313357265 hasConcept C139719470 @default.
- W4313357265 hasConcept C153823671 @default.
- W4313357265 hasConcept C154945302 @default.
- W4313357265 hasConcept C162324750 @default.
- W4313357265 hasConcept C186108316 @default.
- W4313357265 hasConcept C18903297 @default.
- W4313357265 hasConcept C191897082 @default.
- W4313357265 hasConcept C192562407 @default.
- W4313357265 hasConcept C195975749 @default.
- W4313357265 hasConcept C204983608 @default.
- W4313357265 hasConcept C39432304 @default.
- W4313357265 hasConcept C41008148 @default.
- W4313357265 hasConcept C524765639 @default.
- W4313357265 hasConcept C58166 @default.
- W4313357265 hasConcept C62520636 @default.
- W4313357265 hasConcept C6557445 @default.
- W4313357265 hasConcept C86803240 @default.
- W4313357265 hasConcept C88463610 @default.
- W4313357265 hasConcept C88862950 @default.
- W4313357265 hasConcept C94598645 @default.
- W4313357265 hasConceptScore W4313357265C118518473 @default.
- W4313357265 hasConceptScore W4313357265C121332964 @default.
- W4313357265 hasConceptScore W4313357265C126343540 @default.
- W4313357265 hasConceptScore W4313357265C127413603 @default.
- W4313357265 hasConceptScore W4313357265C134121241 @default.
- W4313357265 hasConceptScore W4313357265C139719470 @default.
- W4313357265 hasConceptScore W4313357265C153823671 @default.
- W4313357265 hasConceptScore W4313357265C154945302 @default.
- W4313357265 hasConceptScore W4313357265C162324750 @default.
- W4313357265 hasConceptScore W4313357265C186108316 @default.
- W4313357265 hasConceptScore W4313357265C18903297 @default.
- W4313357265 hasConceptScore W4313357265C191897082 @default.
- W4313357265 hasConceptScore W4313357265C192562407 @default.
- W4313357265 hasConceptScore W4313357265C195975749 @default.
- W4313357265 hasConceptScore W4313357265C204983608 @default.
- W4313357265 hasConceptScore W4313357265C39432304 @default.
- W4313357265 hasConceptScore W4313357265C41008148 @default.
- W4313357265 hasConceptScore W4313357265C524765639 @default.