Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313357273> ?p ?o ?g. }
- W4313357273 abstract "Abstract Groundwater level fluctuations are one of the main components of the hydrogeological cycle and one of the required variables for many water resources operation models. The numerical models can estimate groundwater level (GWL) based on extensive statistics and information and using complex equations in any area. But one of the most important challenges in analyzing and predicting groundwater depletion in water management is the lack of reliable and complete data. For this reason, the use of artificial intelligence models with high predictive accuracy and due to the need for less data is inevitable. In recent years, the use of different numerical models has been noticed as an efficient solution. These models are able to estimate groundwater levels in any region based on extensive statistics and information and also various field experiments such as pumping tests, geophysics, soil and land use maps, topography and slope data, different boundary conditions and complex equations. In the current research, first, by using available statistics, information and maps, the groundwater level fluctuations of the Sonqor plain are simulated by the GMS model, and the accuracy of the model is evaluated in two stages of calibration and validation. Then, due to the need for much less data volume in artificial intelligence-based methods, the GA-ANN and ICA-ANN hybrid methods and the ELM and ORELM models are utilized. The results display that the output of the ORELM model has the best fit with observed data with a correlation coefficient equal to 0.96, and it also has the best and closest scatter points around the 45 degrees line, and in this sense, it is considered as the most accurate model. To ensure the correct selection of the best model, the Taylor diagram is also used. The results demonstrate that the closest point to the reference point is related to the ORELM method. Therefore, to predict the groundwater level in the whole plain, instead of using the complex GMS model with a very large volume of data and also the very time-consuming process of calibration and verification, the ORELM model can be used with confidence. This approach greatly helps researchers to predict groundwater level variations in dry and wet years using artificial intelligence with high accuracy instead of numerical models with complex and time-consuming structures." @default.
- W4313357273 created "2023-01-06" @default.
- W4313357273 creator A5007070318 @default.
- W4313357273 creator A5022514241 @default.
- W4313357273 creator A5053772900 @default.
- W4313357273 creator A5058134552 @default.
- W4313357273 creator A5083165500 @default.
- W4313357273 date "2022-12-30" @default.
- W4313357273 modified "2023-09-30" @default.
- W4313357273 title "Prediction of groundwater level fluctuations using artificial intelligence-based models and GMS" @default.
- W4313357273 cites W1972191129 @default.
- W4313357273 cites W1974271441 @default.
- W4313357273 cites W1986096622 @default.
- W4313357273 cites W2011394172 @default.
- W4313357273 cites W2027371752 @default.
- W4313357273 cites W2041122547 @default.
- W4313357273 cites W2044797709 @default.
- W4313357273 cites W2077927310 @default.
- W4313357273 cites W2088286343 @default.
- W4313357273 cites W2102843479 @default.
- W4313357273 cites W2111072639 @default.
- W4313357273 cites W2147890572 @default.
- W4313357273 cites W2167358086 @default.
- W4313357273 cites W2256440425 @default.
- W4313357273 cites W2309151004 @default.
- W4313357273 cites W2313350192 @default.
- W4313357273 cites W2535024826 @default.
- W4313357273 cites W2583672379 @default.
- W4313357273 cites W2588479775 @default.
- W4313357273 cites W2803907192 @default.
- W4313357273 cites W2898424009 @default.
- W4313357273 cites W2911668399 @default.
- W4313357273 cites W2912116308 @default.
- W4313357273 cites W2935484715 @default.
- W4313357273 cites W2972434026 @default.
- W4313357273 cites W2997359701 @default.
- W4313357273 cites W3008124815 @default.
- W4313357273 cites W3008347876 @default.
- W4313357273 cites W3012057477 @default.
- W4313357273 cites W3029199860 @default.
- W4313357273 cites W3088716080 @default.
- W4313357273 cites W3090467900 @default.
- W4313357273 cites W3105695822 @default.
- W4313357273 cites W3125247167 @default.
- W4313357273 cites W3168593366 @default.
- W4313357273 cites W3183369955 @default.
- W4313357273 cites W3193529422 @default.
- W4313357273 cites W3197406729 @default.
- W4313357273 cites W3207688769 @default.
- W4313357273 cites W329934671 @default.
- W4313357273 cites W4206234899 @default.
- W4313357273 cites W4206948839 @default.
- W4313357273 cites W4220991030 @default.
- W4313357273 cites W4230924274 @default.
- W4313357273 cites W4282967695 @default.
- W4313357273 cites W67439404 @default.
- W4313357273 doi "https://doi.org/10.1007/s13201-022-01861-7" @default.
- W4313357273 hasPublicationYear "2022" @default.
- W4313357273 type Work @default.
- W4313357273 citedByCount "7" @default.
- W4313357273 countsByYear W43133572732023 @default.
- W4313357273 crossrefType "journal-article" @default.
- W4313357273 hasAuthorship W4313357273A5007070318 @default.
- W4313357273 hasAuthorship W4313357273A5022514241 @default.
- W4313357273 hasAuthorship W4313357273A5053772900 @default.
- W4313357273 hasAuthorship W4313357273A5058134552 @default.
- W4313357273 hasAuthorship W4313357273A5083165500 @default.
- W4313357273 hasBestOaLocation W43133572731 @default.
- W4313357273 hasConcept C105795698 @default.
- W4313357273 hasConcept C119857082 @default.
- W4313357273 hasConcept C124101348 @default.
- W4313357273 hasConcept C127313418 @default.
- W4313357273 hasConcept C131227075 @default.
- W4313357273 hasConcept C154945302 @default.
- W4313357273 hasConcept C165838908 @default.
- W4313357273 hasConcept C176650113 @default.
- W4313357273 hasConcept C187320778 @default.
- W4313357273 hasConcept C202444582 @default.
- W4313357273 hasConcept C2780092901 @default.
- W4313357273 hasConcept C33556824 @default.
- W4313357273 hasConcept C33923547 @default.
- W4313357273 hasConcept C41008148 @default.
- W4313357273 hasConcept C50644808 @default.
- W4313357273 hasConcept C75622301 @default.
- W4313357273 hasConcept C76177295 @default.
- W4313357273 hasConcept C76886044 @default.
- W4313357273 hasConcept C9652623 @default.
- W4313357273 hasConceptScore W4313357273C105795698 @default.
- W4313357273 hasConceptScore W4313357273C119857082 @default.
- W4313357273 hasConceptScore W4313357273C124101348 @default.
- W4313357273 hasConceptScore W4313357273C127313418 @default.
- W4313357273 hasConceptScore W4313357273C131227075 @default.
- W4313357273 hasConceptScore W4313357273C154945302 @default.
- W4313357273 hasConceptScore W4313357273C165838908 @default.
- W4313357273 hasConceptScore W4313357273C176650113 @default.
- W4313357273 hasConceptScore W4313357273C187320778 @default.
- W4313357273 hasConceptScore W4313357273C202444582 @default.
- W4313357273 hasConceptScore W4313357273C2780092901 @default.
- W4313357273 hasConceptScore W4313357273C33556824 @default.
- W4313357273 hasConceptScore W4313357273C33923547 @default.