Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313357557> ?p ?o ?g. }
- W4313357557 abstract "Abstract Considering cost and time, the Muskingum method is the most efficient flood routing technique. The existing Muskingum models are only different in the storage equation and their efficiency depends on the model type and the estimation of different parameters. In this paper, the nonlinear Muskingum model is combined with a new lateral flow equation. Although the new lateral flow equation includes five decision variables, flood routing is done more accurately than previous studies. The new hybrid Muskingum model have 12 decision variables. To approximate the model decision variables, the artificial gorilla troops optimizer is utilized. The new Muskingum is examined for six case studies. The results of the new proposed method for these studies indicates the significant improvement of the model compared to previous research. Moreover, the sixth case study is the Dinavar River flood, which has not been used by researchers so far. Another significant point is the outstanding performance of the powerful artificial gorilla troops algorithm in minimizing the target function." @default.
- W4313357557 created "2023-01-06" @default.
- W4313357557 creator A5028286168 @default.
- W4313357557 creator A5053772900 @default.
- W4313357557 creator A5064202991 @default.
- W4313357557 date "2022-12-30" @default.
- W4313357557 modified "2023-10-16" @default.
- W4313357557 title "A new technique for flood routing by nonlinear Muskingum model and artificial gorilla troops algorithm" @default.
- W4313357557 cites W1965152048 @default.
- W4313357557 cites W1971069769 @default.
- W4313357557 cites W1974118835 @default.
- W4313357557 cites W1980313990 @default.
- W4313357557 cites W1986008673 @default.
- W4313357557 cites W2027176979 @default.
- W4313357557 cites W2033904036 @default.
- W4313357557 cites W2058998445 @default.
- W4313357557 cites W2064002865 @default.
- W4313357557 cites W2072626177 @default.
- W4313357557 cites W2073770266 @default.
- W4313357557 cites W2075988839 @default.
- W4313357557 cites W2079266504 @default.
- W4313357557 cites W2082739419 @default.
- W4313357557 cites W2090137585 @default.
- W4313357557 cites W2111391738 @default.
- W4313357557 cites W2118664781 @default.
- W4313357557 cites W2153204731 @default.
- W4313357557 cites W2341612709 @default.
- W4313357557 cites W2471062691 @default.
- W4313357557 cites W2579060381 @default.
- W4313357557 cites W2695852654 @default.
- W4313357557 cites W2742110658 @default.
- W4313357557 cites W2807613184 @default.
- W4313357557 cites W2808282876 @default.
- W4313357557 cites W2888138588 @default.
- W4313357557 cites W2945644384 @default.
- W4313357557 cites W2990361600 @default.
- W4313357557 cites W3010761448 @default.
- W4313357557 cites W3026292493 @default.
- W4313357557 cites W3040303718 @default.
- W4313357557 cites W3042123167 @default.
- W4313357557 cites W3081363793 @default.
- W4313357557 cites W3139228542 @default.
- W4313357557 cites W3170272678 @default.
- W4313357557 cites W3185076117 @default.
- W4313357557 cites W3197870444 @default.
- W4313357557 cites W3212723270 @default.
- W4313357557 cites W4206087658 @default.
- W4313357557 cites W4213291529 @default.
- W4313357557 cites W4249785105 @default.
- W4313357557 doi "https://doi.org/10.1007/s13201-022-01844-8" @default.
- W4313357557 hasPublicationYear "2022" @default.
- W4313357557 type Work @default.
- W4313357557 citedByCount "3" @default.
- W4313357557 countsByYear W43133575572023 @default.
- W4313357557 crossrefType "journal-article" @default.
- W4313357557 hasAuthorship W4313357557A5028286168 @default.
- W4313357557 hasAuthorship W4313357557A5053772900 @default.
- W4313357557 hasAuthorship W4313357557A5064202991 @default.
- W4313357557 hasBestOaLocation W43133575571 @default.
- W4313357557 hasConcept C11413529 @default.
- W4313357557 hasConcept C121332964 @default.
- W4313357557 hasConcept C126255220 @default.
- W4313357557 hasConcept C127413603 @default.
- W4313357557 hasConcept C14036430 @default.
- W4313357557 hasConcept C158622935 @default.
- W4313357557 hasConcept C166957645 @default.
- W4313357557 hasConcept C187320778 @default.
- W4313357557 hasConcept C205649164 @default.
- W4313357557 hasConcept C2524010 @default.
- W4313357557 hasConcept C2779313249 @default.
- W4313357557 hasConcept C28719098 @default.
- W4313357557 hasConcept C31258907 @default.
- W4313357557 hasConcept C33923547 @default.
- W4313357557 hasConcept C38349280 @default.
- W4313357557 hasConcept C41008148 @default.
- W4313357557 hasConcept C62520636 @default.
- W4313357557 hasConcept C74172769 @default.
- W4313357557 hasConcept C74256435 @default.
- W4313357557 hasConcept C78458016 @default.
- W4313357557 hasConcept C86803240 @default.
- W4313357557 hasConceptScore W4313357557C11413529 @default.
- W4313357557 hasConceptScore W4313357557C121332964 @default.
- W4313357557 hasConceptScore W4313357557C126255220 @default.
- W4313357557 hasConceptScore W4313357557C127413603 @default.
- W4313357557 hasConceptScore W4313357557C14036430 @default.
- W4313357557 hasConceptScore W4313357557C158622935 @default.
- W4313357557 hasConceptScore W4313357557C166957645 @default.
- W4313357557 hasConceptScore W4313357557C187320778 @default.
- W4313357557 hasConceptScore W4313357557C205649164 @default.
- W4313357557 hasConceptScore W4313357557C2524010 @default.
- W4313357557 hasConceptScore W4313357557C2779313249 @default.
- W4313357557 hasConceptScore W4313357557C28719098 @default.
- W4313357557 hasConceptScore W4313357557C31258907 @default.
- W4313357557 hasConceptScore W4313357557C33923547 @default.
- W4313357557 hasConceptScore W4313357557C38349280 @default.
- W4313357557 hasConceptScore W4313357557C41008148 @default.
- W4313357557 hasConceptScore W4313357557C62520636 @default.
- W4313357557 hasConceptScore W4313357557C74172769 @default.
- W4313357557 hasConceptScore W4313357557C74256435 @default.
- W4313357557 hasConceptScore W4313357557C78458016 @default.