Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313360704> ?p ?o ?g. }
- W4313360704 endingPage "641" @default.
- W4313360704 startingPage "641" @default.
- W4313360704 abstract "Nowadays, lightweight aggregate concrete is becoming more popular due to its versatile properties. It mainly helps to reduce the dead loads of the structure, which ultimately reduces design load requirements. The main challenge associated with lightweight aggregate concrete is finding an optimized mix per requirements. However, the conventional material design of this composite is quite costly, time-consuming, and iterative. This research proposes a simplified methodology for the mix designing of structural and non-structural lightweight aggregate concrete by incorporating machine learning. For this purpose, five distinct machine learning algorithms, support vector machine (SVM), artificial neural network (ANN), decision tree (DT), Gaussian process of regression (GPR), and extreme gradient boosting tree (XGBoost) algorithms, were investigated. For the training, testing, and validation process, a total of 420 data points were collected from 43 published journal articles. The performance of models was evaluated based on statistical performance indicators. Overall, 11 input parameters, including ingredients of the concrete mix and aggregate properties were entertained; the only output parameter was the compressive strength of lightweight concrete. The results revealed that the GPR model outperformed the remaining four machine learning models by attaining an R2 value of 0.99, RMSE of 1.34, MSE of 1.79, and MAE of 0.69. In a nutshell, these simplified modern techniques can be employed to make the design of lightweight aggregate concrete easy without extensive experimentation." @default.
- W4313360704 created "2023-01-06" @default.
- W4313360704 creator A5039167667 @default.
- W4313360704 creator A5058276369 @default.
- W4313360704 creator A5066312873 @default.
- W4313360704 creator A5068297346 @default.
- W4313360704 creator A5071340075 @default.
- W4313360704 date "2022-12-30" @default.
- W4313360704 modified "2023-10-15" @default.
- W4313360704 title "Machine Learning-Based Predictive Modeling of Sustainable Lightweight Aggregate Concrete" @default.
- W4313360704 cites W1913961715 @default.
- W4313360704 cites W1973724244 @default.
- W4313360704 cites W1980147422 @default.
- W4313360704 cites W1982106581 @default.
- W4313360704 cites W1982117460 @default.
- W4313360704 cites W1983311944 @default.
- W4313360704 cites W1997945763 @default.
- W4313360704 cites W2011682785 @default.
- W4313360704 cites W2032790788 @default.
- W4313360704 cites W2040726420 @default.
- W4313360704 cites W2046004523 @default.
- W4313360704 cites W2049534828 @default.
- W4313360704 cites W2055753226 @default.
- W4313360704 cites W2063629125 @default.
- W4313360704 cites W2066064629 @default.
- W4313360704 cites W2071908367 @default.
- W4313360704 cites W2078567073 @default.
- W4313360704 cites W2097720714 @default.
- W4313360704 cites W2116197285 @default.
- W4313360704 cites W2119509897 @default.
- W4313360704 cites W2143511100 @default.
- W4313360704 cites W2171308009 @default.
- W4313360704 cites W2249992225 @default.
- W4313360704 cites W2277974698 @default.
- W4313360704 cites W2315719139 @default.
- W4313360704 cites W2523984406 @default.
- W4313360704 cites W2549501476 @default.
- W4313360704 cites W2565051782 @default.
- W4313360704 cites W2569542951 @default.
- W4313360704 cites W2598842364 @default.
- W4313360704 cites W2600879960 @default.
- W4313360704 cites W2795790000 @default.
- W4313360704 cites W2807464630 @default.
- W4313360704 cites W2839168421 @default.
- W4313360704 cites W2890790760 @default.
- W4313360704 cites W2914364648 @default.
- W4313360704 cites W2920965395 @default.
- W4313360704 cites W2946202580 @default.
- W4313360704 cites W2968657552 @default.
- W4313360704 cites W2969431510 @default.
- W4313360704 cites W2969796620 @default.
- W4313360704 cites W2970393605 @default.
- W4313360704 cites W2976353133 @default.
- W4313360704 cites W2988530120 @default.
- W4313360704 cites W3004380907 @default.
- W4313360704 cites W3006986138 @default.
- W4313360704 cites W3007270451 @default.
- W4313360704 cites W3007415625 @default.
- W4313360704 cites W3009211770 @default.
- W4313360704 cites W3009737132 @default.
- W4313360704 cites W3010156620 @default.
- W4313360704 cites W3012181011 @default.
- W4313360704 cites W3012954140 @default.
- W4313360704 cites W3015837740 @default.
- W4313360704 cites W3020722688 @default.
- W4313360704 cites W3034133750 @default.
- W4313360704 cites W3037294772 @default.
- W4313360704 cites W3092657053 @default.
- W4313360704 cites W3093250413 @default.
- W4313360704 cites W3101095738 @default.
- W4313360704 cites W3116396771 @default.
- W4313360704 cites W3118299338 @default.
- W4313360704 cites W3132653939 @default.
- W4313360704 cites W3137177736 @default.
- W4313360704 cites W3137343023 @default.
- W4313360704 cites W3137557016 @default.
- W4313360704 cites W3170584821 @default.
- W4313360704 cites W3181411294 @default.
- W4313360704 cites W3183098967 @default.
- W4313360704 cites W3184677296 @default.
- W4313360704 cites W3203897832 @default.
- W4313360704 cites W3205583230 @default.
- W4313360704 cites W3208285720 @default.
- W4313360704 cites W3209935396 @default.
- W4313360704 cites W3210395163 @default.
- W4313360704 cites W3212595790 @default.
- W4313360704 cites W4200132597 @default.
- W4313360704 cites W4206454867 @default.
- W4313360704 cites W4210504877 @default.
- W4313360704 cites W4210750266 @default.
- W4313360704 cites W4210798959 @default.
- W4313360704 cites W4220967528 @default.
- W4313360704 cites W4224096637 @default.
- W4313360704 cites W4225150428 @default.
- W4313360704 cites W4281258154 @default.
- W4313360704 cites W4281565179 @default.
- W4313360704 cites W4282594474 @default.
- W4313360704 cites W4283650432 @default.