Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313360752> ?p ?o ?g. }
- W4313360752 endingPage "149" @default.
- W4313360752 startingPage "149" @default.
- W4313360752 abstract "This paper uses computational intelligence and machine learning methods to describe experimental modeling performed to approximate the static characteristics of one type of fluidic muscle from the manufacturer FESTO for three different muscle sizes. For the experiments, measured data from the manufacturer and data from a real system (i.e., test device) were used. The measurements, which took place on the experimental equipment, were carried out in two stages (i.e., when the muscle was pressed and when the muscle was relaxed). The resulting measured characteristics were obtained by averaging two values at a given moment. MATLAB® software was used for simulations, in which four models were created: MLP, SVM, ANFIS, and a custom model (i.e., polynomial model). Given that most articles mainly interpret their results graphically when approximating characteristics, in this article, the outputs of the models are also compared with the measured data based on the SSE, NRMSE, SBC, and AIC performance indicators, enabling a more relevant and comprehensive overview of the performance of the individual models. The outputs of the best models described in this article reach an accuracy of 89.90% to 98.74% (all from the MLP group), depending on the muscle size, compared to real measured outputs." @default.
- W4313360752 created "2023-01-06" @default.
- W4313360752 creator A5005864532 @default.
- W4313360752 creator A5078702562 @default.
- W4313360752 creator A5087622080 @default.
- W4313360752 date "2022-12-28" @default.
- W4313360752 modified "2023-10-12" @default.
- W4313360752 title "Evaluation of Machine Learning-Based Parsimonious Models for Static Modeling of Fluidic Muscles in Compliant Mechanisms" @default.
- W4313360752 cites W1976670750 @default.
- W4313360752 cites W1985353881 @default.
- W4313360752 cites W1998879302 @default.
- W4313360752 cites W2006674054 @default.
- W4313360752 cites W2007149034 @default.
- W4313360752 cites W2019207321 @default.
- W4313360752 cites W2037891208 @default.
- W4313360752 cites W2053061982 @default.
- W4313360752 cites W2054282473 @default.
- W4313360752 cites W2057562264 @default.
- W4313360752 cites W2074020162 @default.
- W4313360752 cites W2075795552 @default.
- W4313360752 cites W2085480716 @default.
- W4313360752 cites W2092685321 @default.
- W4313360752 cites W2138485100 @default.
- W4313360752 cites W2140483839 @default.
- W4313360752 cites W2141057577 @default.
- W4313360752 cites W2156378823 @default.
- W4313360752 cites W2170447269 @default.
- W4313360752 cites W2323171385 @default.
- W4313360752 cites W2348649752 @default.
- W4313360752 cites W2502511820 @default.
- W4313360752 cites W2539414792 @default.
- W4313360752 cites W2566075616 @default.
- W4313360752 cites W2584789783 @default.
- W4313360752 cites W2613694843 @default.
- W4313360752 cites W2733979391 @default.
- W4313360752 cites W2761058956 @default.
- W4313360752 cites W2774615348 @default.
- W4313360752 cites W2808757576 @default.
- W4313360752 cites W2888718192 @default.
- W4313360752 cites W2901321474 @default.
- W4313360752 cites W2905266186 @default.
- W4313360752 cites W2922422128 @default.
- W4313360752 cites W2952064883 @default.
- W4313360752 cites W2953297110 @default.
- W4313360752 cites W2965165158 @default.
- W4313360752 cites W2965456331 @default.
- W4313360752 cites W2984686885 @default.
- W4313360752 cites W2994659735 @default.
- W4313360752 cites W2995576761 @default.
- W4313360752 cites W3003030569 @default.
- W4313360752 cites W3013965421 @default.
- W4313360752 cites W3037414720 @default.
- W4313360752 cites W3039965869 @default.
- W4313360752 cites W4210294442 @default.
- W4313360752 cites W4283034934 @default.
- W4313360752 cites W4303832876 @default.
- W4313360752 cites W4303943876 @default.
- W4313360752 cites W4312401549 @default.
- W4313360752 cites W2021744506 @default.
- W4313360752 doi "https://doi.org/10.3390/math11010149" @default.
- W4313360752 hasPublicationYear "2022" @default.
- W4313360752 type Work @default.
- W4313360752 citedByCount "1" @default.
- W4313360752 countsByYear W43133607522023 @default.
- W4313360752 crossrefType "journal-article" @default.
- W4313360752 hasAuthorship W4313360752A5005864532 @default.
- W4313360752 hasAuthorship W4313360752A5078702562 @default.
- W4313360752 hasAuthorship W4313360752A5087622080 @default.
- W4313360752 hasBestOaLocation W43133607521 @default.
- W4313360752 hasConcept C105795698 @default.
- W4313360752 hasConcept C111919701 @default.
- W4313360752 hasConcept C119857082 @default.
- W4313360752 hasConcept C121332964 @default.
- W4313360752 hasConcept C12267149 @default.
- W4313360752 hasConcept C154945302 @default.
- W4313360752 hasConcept C179254644 @default.
- W4313360752 hasConcept C199360897 @default.
- W4313360752 hasConcept C2777904410 @default.
- W4313360752 hasConcept C2780365114 @default.
- W4313360752 hasConcept C33923547 @default.
- W4313360752 hasConcept C41008148 @default.
- W4313360752 hasConcept C44154836 @default.
- W4313360752 hasConcept C55037315 @default.
- W4313360752 hasConcept C74650414 @default.
- W4313360752 hasConceptScore W4313360752C105795698 @default.
- W4313360752 hasConceptScore W4313360752C111919701 @default.
- W4313360752 hasConceptScore W4313360752C119857082 @default.
- W4313360752 hasConceptScore W4313360752C121332964 @default.
- W4313360752 hasConceptScore W4313360752C12267149 @default.
- W4313360752 hasConceptScore W4313360752C154945302 @default.
- W4313360752 hasConceptScore W4313360752C179254644 @default.
- W4313360752 hasConceptScore W4313360752C199360897 @default.
- W4313360752 hasConceptScore W4313360752C2777904410 @default.
- W4313360752 hasConceptScore W4313360752C2780365114 @default.
- W4313360752 hasConceptScore W4313360752C33923547 @default.
- W4313360752 hasConceptScore W4313360752C41008148 @default.
- W4313360752 hasConceptScore W4313360752C44154836 @default.
- W4313360752 hasConceptScore W4313360752C55037315 @default.