Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313360941> ?p ?o ?g. }
- W4313360941 endingPage "603" @default.
- W4313360941 startingPage "603" @default.
- W4313360941 abstract "Fossil fuels are depended upon often in the transport sector. The use of diesel engines in all areas produce pollutants, such as NOx and CO, which cause serious environmental pollution and hazards, such as global climate change and breathing difficulties. Conventional fuel usage should be reduced, and there should be a shift toward alternative fuels. For compression ignition (CI) engines, microalgae biodiesel has been promoted as a clean, sustainable fuel. This is because it possesses desired traits, such as a quick rate of development, high productivity, and the capacity to turn CO2 into fuel. When algal biodiesel is used, pollutants, such as CO, UBHC, and smoke, are typically reduced, whereas NOx emissions are typically increased. The adoption of an exhaust gas recirculation technology and the advancement or delay of injection timing can effectively reduce NOx formation. Incorporating antioxidant chemicals such as butylated hydroxyl anisole (BHA) into fuel also minimizes NOx formation. In this study, the use of microalgae biodiesel as a substitute fuel for CI engines was investigated by altering the injection timing and adding each antioxidant in two doses. According to ASTM standard test procedures for biodiesel, the fuel qualities of various blends of algal biodiesel with antioxidants were tested and compared with the diesel fuel. The experiments were conducted using CI engines, and parameters were examined, such UBHC, CO, NOx, and smoke opacity. In comparison to diesel fuel, B20 + 30% BHA (21 bTDC) blends produced 49% lower oxides of nitrogen. The smoke, HC, and CO emissions of fuel blend B20 + 30% BHA (25 bTDC) were reduced by 33.33%, 32.37%, and 11.21%, respectively, compared with those of diesel fuel. The fuel blend B20 + 30% BHA (25 bTDC) showed the highest brake thermal efficiency of 14.52% at peak load condition. A multi-output regression deep long short-term memory (MDLSTM) model was designed to predict the performance and emissions of CI engines operating with varied fuel mixtures. The average RMSE and R2 values for the proposed MDLSTM were 0.38 and 0.9579, respectively." @default.
- W4313360941 created "2023-01-06" @default.
- W4313360941 creator A5012502819 @default.
- W4313360941 creator A5019308548 @default.
- W4313360941 creator A5028002555 @default.
- W4313360941 creator A5035191904 @default.
- W4313360941 creator A5052879081 @default.
- W4313360941 creator A5056334755 @default.
- W4313360941 creator A5084399251 @default.
- W4313360941 date "2022-12-29" @default.
- W4313360941 modified "2023-10-16" @default.
- W4313360941 title "Effects of Injection Timing and Antioxidant on NOx Reduction of CI Engine Fueled with Algae Biodiesel Blend Using Machine Learning Techniques" @default.
- W4313360941 cites W1071069057 @default.
- W4313360941 cites W1513152454 @default.
- W4313360941 cites W1964386724 @default.
- W4313360941 cites W1966132849 @default.
- W4313360941 cites W2001022655 @default.
- W4313360941 cites W2019420972 @default.
- W4313360941 cites W2027407405 @default.
- W4313360941 cites W2040588519 @default.
- W4313360941 cites W2054858811 @default.
- W4313360941 cites W2060707873 @default.
- W4313360941 cites W2064675550 @default.
- W4313360941 cites W2076165894 @default.
- W4313360941 cites W2083771205 @default.
- W4313360941 cites W2088160053 @default.
- W4313360941 cites W2089012098 @default.
- W4313360941 cites W2091176046 @default.
- W4313360941 cites W2117538140 @default.
- W4313360941 cites W2169989540 @default.
- W4313360941 cites W2237653161 @default.
- W4313360941 cites W2258979247 @default.
- W4313360941 cites W2276565745 @default.
- W4313360941 cites W2339542066 @default.
- W4313360941 cites W2403748147 @default.
- W4313360941 cites W2476460627 @default.
- W4313360941 cites W2554518107 @default.
- W4313360941 cites W2554952000 @default.
- W4313360941 cites W2570725143 @default.
- W4313360941 cites W2792238871 @default.
- W4313360941 cites W2795399982 @default.
- W4313360941 cites W2888706702 @default.
- W4313360941 cites W2890963502 @default.
- W4313360941 cites W2897241621 @default.
- W4313360941 cites W2987372064 @default.
- W4313360941 cites W2998656472 @default.
- W4313360941 cites W3082457698 @default.
- W4313360941 cites W3083553832 @default.
- W4313360941 cites W3092717910 @default.
- W4313360941 cites W3096987333 @default.
- W4313360941 cites W3110183245 @default.
- W4313360941 cites W3111716631 @default.
- W4313360941 cites W3113360996 @default.
- W4313360941 cites W3139816945 @default.
- W4313360941 cites W3193613171 @default.
- W4313360941 cites W3196898688 @default.
- W4313360941 cites W3200304751 @default.
- W4313360941 cites W3202486435 @default.
- W4313360941 cites W3207647263 @default.
- W4313360941 cites W3208906812 @default.
- W4313360941 cites W3213234209 @default.
- W4313360941 cites W3216284968 @default.
- W4313360941 cites W4280629501 @default.
- W4313360941 cites W4294287185 @default.
- W4313360941 cites W4310095871 @default.
- W4313360941 cites W4312082335 @default.
- W4313360941 cites W4312082541 @default.
- W4313360941 doi "https://doi.org/10.3390/su15010603" @default.
- W4313360941 hasPublicationYear "2022" @default.
- W4313360941 type Work @default.
- W4313360941 citedByCount "2" @default.
- W4313360941 countsByYear W43133609412023 @default.
- W4313360941 crossrefType "journal-article" @default.
- W4313360941 hasAuthorship W4313360941A5012502819 @default.
- W4313360941 hasAuthorship W4313360941A5019308548 @default.
- W4313360941 hasAuthorship W4313360941A5028002555 @default.
- W4313360941 hasAuthorship W4313360941A5035191904 @default.
- W4313360941 hasAuthorship W4313360941A5052879081 @default.
- W4313360941 hasAuthorship W4313360941A5056334755 @default.
- W4313360941 hasAuthorship W4313360941A5084399251 @default.
- W4313360941 hasBestOaLocation W43133609411 @default.
- W4313360941 hasConcept C105923489 @default.
- W4313360941 hasConcept C127413603 @default.
- W4313360941 hasConcept C138171918 @default.
- W4313360941 hasConcept C161790260 @default.
- W4313360941 hasConcept C171146098 @default.
- W4313360941 hasConcept C178790620 @default.
- W4313360941 hasConcept C185592680 @default.
- W4313360941 hasConcept C203032635 @default.
- W4313360941 hasConcept C2780804531 @default.
- W4313360941 hasConcept C39432304 @default.
- W4313360941 hasConcept C528095902 @default.
- W4313360941 hasConcept C52896960 @default.
- W4313360941 hasConcept C53991642 @default.
- W4313360941 hasConcept C548081761 @default.
- W4313360941 hasConcept C58874564 @default.
- W4313360941 hasConcept C68189081 @default.
- W4313360941 hasConcept C73081478 @default.