Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313360978> ?p ?o ?g. }
- W4313360978 endingPage "356" @default.
- W4313360978 startingPage "356" @default.
- W4313360978 abstract "Human activity recognition (HAR) has emerged as a significant area of research due to its numerous possible applications, including ambient assisted living, healthcare, abnormal behaviour detection, etc. Recently, HAR using WiFi channel state information (CSI) has become a predominant and unique approach in indoor environments compared to others (i.e., sensor and vision) due to its privacy-preserving qualities, thereby eliminating the need to carry additional devices and providing flexibility of capture motions in both line-of-sight (LOS) and non-line-of-sight (NLOS) settings. Existing deep learning (DL)-based HAR approaches usually extract either temporal or spatial features and lack adequate means to integrate and utilize the two simultaneously, making it challenging to recognize different activities accurately. Motivated by this, we propose a novel DL-based model named spatio-temporal convolution with nested long short-term memory (STC-NLSTMNet), with the ability to extract spatial and temporal features concurrently and automatically recognize human activity with very high accuracy. The proposed STC-NLSTMNet model is mainly comprised of depthwise separable convolution (DS-Conv) blocks, feature attention module (FAM) and NLSTM. The DS-Conv blocks extract the spatial features from the CSI signal and add feature attention modules (FAM) to draw attention to the most essential features. These robust features are fed into NLSTM as inputs to explore the hidden intrinsic temporal features in CSI signals. The proposed STC-NLSTMNet model is evaluated using two publicly available datasets: Multi-environment and StanWiFi. The experimental results revealed that the STC-NLSTMNet model achieved activity recognition accuracies of 98.20% and 99.88% on Multi-environment and StanWiFi datasets, respectively. Its activity recognition performance is also compared with other existing approaches and our proposed STC-NLSTMNet model significantly improves the activity recognition accuracies by 4% and 1.88%, respectively, compared to the best existing method." @default.
- W4313360978 created "2023-01-06" @default.
- W4313360978 creator A5013640870 @default.
- W4313360978 creator A5055991801 @default.
- W4313360978 creator A5058300303 @default.
- W4313360978 creator A5059572045 @default.
- W4313360978 creator A5060526654 @default.
- W4313360978 creator A5089612762 @default.
- W4313360978 date "2022-12-29" @default.
- W4313360978 modified "2023-10-13" @default.
- W4313360978 title "STC-NLSTMNet: An Improved Human Activity Recognition Method Using Convolutional Neural Network with NLSTM from WiFi CSI" @default.
- W4313360978 cites W1983705368 @default.
- W4313360978 cites W1996347321 @default.
- W4313360978 cites W2002475595 @default.
- W4313360978 cites W2031972300 @default.
- W4313360978 cites W2048821851 @default.
- W4313360978 cites W2145546283 @default.
- W4313360978 cites W2164692160 @default.
- W4313360978 cites W2315802775 @default.
- W4313360978 cites W2321358566 @default.
- W4313360978 cites W2344637340 @default.
- W4313360978 cites W2344757691 @default.
- W4313360978 cites W2531409750 @default.
- W4313360978 cites W2574393329 @default.
- W4313360978 cites W2594230123 @default.
- W4313360978 cites W2624829428 @default.
- W4313360978 cites W2749455101 @default.
- W4313360978 cites W2763219399 @default.
- W4313360978 cites W2764145045 @default.
- W4313360978 cites W2898784069 @default.
- W4313360978 cites W2899145720 @default.
- W4313360978 cites W2914615046 @default.
- W4313360978 cites W2944605902 @default.
- W4313360978 cites W2970344707 @default.
- W4313360978 cites W2972355358 @default.
- W4313360978 cites W2980803040 @default.
- W4313360978 cites W3015442482 @default.
- W4313360978 cites W3031001494 @default.
- W4313360978 cites W3031570917 @default.
- W4313360978 cites W3088369757 @default.
- W4313360978 cites W3105020070 @default.
- W4313360978 cites W3113067855 @default.
- W4313360978 cites W3118382806 @default.
- W4313360978 cites W3131371296 @default.
- W4313360978 cites W3153579665 @default.
- W4313360978 cites W3157442942 @default.
- W4313360978 cites W3159182882 @default.
- W4313360978 cites W3174019867 @default.
- W4313360978 cites W3206448913 @default.
- W4313360978 cites W3210415230 @default.
- W4313360978 cites W3211515875 @default.
- W4313360978 cites W3214157598 @default.
- W4313360978 cites W4206098315 @default.
- W4313360978 cites W4206289001 @default.
- W4313360978 cites W4206744836 @default.
- W4313360978 cites W4224918263 @default.
- W4313360978 cites W4225758444 @default.
- W4313360978 cites W4226502924 @default.
- W4313360978 cites W4291915834 @default.
- W4313360978 cites W4300544461 @default.
- W4313360978 doi "https://doi.org/10.3390/s23010356" @default.
- W4313360978 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36616954" @default.
- W4313360978 hasPublicationYear "2022" @default.
- W4313360978 type Work @default.
- W4313360978 citedByCount "6" @default.
- W4313360978 countsByYear W43133609782023 @default.
- W4313360978 crossrefType "journal-article" @default.
- W4313360978 hasAuthorship W4313360978A5013640870 @default.
- W4313360978 hasAuthorship W4313360978A5055991801 @default.
- W4313360978 hasAuthorship W4313360978A5058300303 @default.
- W4313360978 hasAuthorship W4313360978A5059572045 @default.
- W4313360978 hasAuthorship W4313360978A5060526654 @default.
- W4313360978 hasAuthorship W4313360978A5089612762 @default.
- W4313360978 hasBestOaLocation W43133609781 @default.
- W4313360978 hasConcept C105795698 @default.
- W4313360978 hasConcept C121687571 @default.
- W4313360978 hasConcept C138885662 @default.
- W4313360978 hasConcept C148063708 @default.
- W4313360978 hasConcept C153180895 @default.
- W4313360978 hasConcept C154910267 @default.
- W4313360978 hasConcept C154945302 @default.
- W4313360978 hasConcept C2776401178 @default.
- W4313360978 hasConcept C2780598303 @default.
- W4313360978 hasConcept C33923547 @default.
- W4313360978 hasConcept C41008148 @default.
- W4313360978 hasConcept C41895202 @default.
- W4313360978 hasConcept C45347329 @default.
- W4313360978 hasConcept C50644808 @default.
- W4313360978 hasConcept C555944384 @default.
- W4313360978 hasConcept C76155785 @default.
- W4313360978 hasConcept C81363708 @default.
- W4313360978 hasConceptScore W4313360978C105795698 @default.
- W4313360978 hasConceptScore W4313360978C121687571 @default.
- W4313360978 hasConceptScore W4313360978C138885662 @default.
- W4313360978 hasConceptScore W4313360978C148063708 @default.
- W4313360978 hasConceptScore W4313360978C153180895 @default.
- W4313360978 hasConceptScore W4313360978C154910267 @default.
- W4313360978 hasConceptScore W4313360978C154945302 @default.