Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313361029> ?p ?o ?g. }
- W4313361029 endingPage "185" @default.
- W4313361029 startingPage "185" @default.
- W4313361029 abstract "In response to the increasing threat of hypersonic weapons, it is of great importance for the defensive side to achieve fast prediction of their feasible attack domain and online inference of their most probable targets. In this study, an online footprint prediction and attack intention inference algorithm for hypersonic glide vehicles (HGVs) is proposed by leveraging the utilization of deep neural networks (DNNs). Specifically, this study focuses on the following three contributions. First, a baseline multi-constrained entry guidance algorithm is developed based on a compound bank angle corridor, and then a dataset containing enough trajectories for the following DNN learning is generated offline by traversing different initial states and control commands. Second, DNNs are developed to learn the functional relationship between the flight state/command and the corresponding ranges; on this basis, an online footprint prediction algorithm is developed by traversing the maximum/minimum ranges and different heading angles. Due to the substitution of DNNs for multiple times of trajectory integration, the computational efficiency for footprint prediction is significantly improved to the millisecond level. Third, combined with the predicted footprint and the hidden information in historical flight data, the attack intention and most probable targets can be further inferred. Simulations are conducted through comparing with the state-of-the-art algorithms, and results demonstrate that the proposed algorithm can achieve accurate prediction for flight footprint and attack intention while possessing significant real-time advantage." @default.
- W4313361029 created "2023-01-06" @default.
- W4313361029 creator A5007418032 @default.
- W4313361029 creator A5030750885 @default.
- W4313361029 creator A5074583271 @default.
- W4313361029 date "2022-12-29" @default.
- W4313361029 modified "2023-09-26" @default.
- W4313361029 title "Deep Neural Network-Based Footprint Prediction and Attack Intention Inference of Hypersonic Glide Vehicles" @default.
- W4313361029 cites W1155138048 @default.
- W4313361029 cites W1882553386 @default.
- W4313361029 cites W1965315256 @default.
- W4313361029 cites W1979807449 @default.
- W4313361029 cites W1983627243 @default.
- W4313361029 cites W1989913615 @default.
- W4313361029 cites W2076259132 @default.
- W4313361029 cites W2087083349 @default.
- W4313361029 cites W2112489240 @default.
- W4313361029 cites W2112627361 @default.
- W4313361029 cites W2130100586 @default.
- W4313361029 cites W2145234769 @default.
- W4313361029 cites W2333270793 @default.
- W4313361029 cites W2898946825 @default.
- W4313361029 cites W2902732296 @default.
- W4313361029 cites W2908576031 @default.
- W4313361029 cites W2910213247 @default.
- W4313361029 cites W2965712423 @default.
- W4313361029 cites W3020910157 @default.
- W4313361029 cites W3048580196 @default.
- W4313361029 cites W3081702520 @default.
- W4313361029 cites W3097815984 @default.
- W4313361029 cites W3123304223 @default.
- W4313361029 cites W3180911843 @default.
- W4313361029 doi "https://doi.org/10.3390/math11010185" @default.
- W4313361029 hasPublicationYear "2022" @default.
- W4313361029 type Work @default.
- W4313361029 citedByCount "2" @default.
- W4313361029 countsByYear W43133610292023 @default.
- W4313361029 crossrefType "journal-article" @default.
- W4313361029 hasAuthorship W4313361029A5007418032 @default.
- W4313361029 hasAuthorship W4313361029A5030750885 @default.
- W4313361029 hasAuthorship W4313361029A5074583271 @default.
- W4313361029 hasBestOaLocation W43133610291 @default.
- W4313361029 hasConcept C111919701 @default.
- W4313361029 hasConcept C11413529 @default.
- W4313361029 hasConcept C119857082 @default.
- W4313361029 hasConcept C121332964 @default.
- W4313361029 hasConcept C122824865 @default.
- W4313361029 hasConcept C124101348 @default.
- W4313361029 hasConcept C127413603 @default.
- W4313361029 hasConcept C1276947 @default.
- W4313361029 hasConcept C13280743 @default.
- W4313361029 hasConcept C132943942 @default.
- W4313361029 hasConcept C13662910 @default.
- W4313361029 hasConcept C146978453 @default.
- W4313361029 hasConcept C151730666 @default.
- W4313361029 hasConcept C154945302 @default.
- W4313361029 hasConcept C176809094 @default.
- W4313361029 hasConcept C205649164 @default.
- W4313361029 hasConcept C2776214188 @default.
- W4313361029 hasConcept C41008148 @default.
- W4313361029 hasConcept C50644808 @default.
- W4313361029 hasConcept C74912251 @default.
- W4313361029 hasConcept C79403827 @default.
- W4313361029 hasConcept C86803240 @default.
- W4313361029 hasConceptScore W4313361029C111919701 @default.
- W4313361029 hasConceptScore W4313361029C11413529 @default.
- W4313361029 hasConceptScore W4313361029C119857082 @default.
- W4313361029 hasConceptScore W4313361029C121332964 @default.
- W4313361029 hasConceptScore W4313361029C122824865 @default.
- W4313361029 hasConceptScore W4313361029C124101348 @default.
- W4313361029 hasConceptScore W4313361029C127413603 @default.
- W4313361029 hasConceptScore W4313361029C1276947 @default.
- W4313361029 hasConceptScore W4313361029C13280743 @default.
- W4313361029 hasConceptScore W4313361029C132943942 @default.
- W4313361029 hasConceptScore W4313361029C13662910 @default.
- W4313361029 hasConceptScore W4313361029C146978453 @default.
- W4313361029 hasConceptScore W4313361029C151730666 @default.
- W4313361029 hasConceptScore W4313361029C154945302 @default.
- W4313361029 hasConceptScore W4313361029C176809094 @default.
- W4313361029 hasConceptScore W4313361029C205649164 @default.
- W4313361029 hasConceptScore W4313361029C2776214188 @default.
- W4313361029 hasConceptScore W4313361029C41008148 @default.
- W4313361029 hasConceptScore W4313361029C50644808 @default.
- W4313361029 hasConceptScore W4313361029C74912251 @default.
- W4313361029 hasConceptScore W4313361029C79403827 @default.
- W4313361029 hasConceptScore W4313361029C86803240 @default.
- W4313361029 hasIssue "1" @default.
- W4313361029 hasLocation W43133610291 @default.
- W4313361029 hasOpenAccess W4313361029 @default.
- W4313361029 hasPrimaryLocation W43133610291 @default.
- W4313361029 hasRelatedWork W2105822491 @default.
- W4313361029 hasRelatedWork W2354594976 @default.
- W4313361029 hasRelatedWork W2383860838 @default.
- W4313361029 hasRelatedWork W2961085424 @default.
- W4313361029 hasRelatedWork W3206220037 @default.
- W4313361029 hasRelatedWork W3207412216 @default.
- W4313361029 hasRelatedWork W4306674287 @default.
- W4313361029 hasRelatedWork W4313361029 @default.