Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313361170> ?p ?o ?g. }
- W4313361170 endingPage "101" @default.
- W4313361170 startingPage "101" @default.
- W4313361170 abstract "In 2019, a corona virus disease (COVID-19) was detected in China that affected millions of people around the world. On 11 March 2020, the WHO declared this disease a pandemic. Currently, more than 200 countries in the world have been affected by this disease. The manual diagnosis of this disease using chest X-ray (CXR) images and magnetic resonance imaging (MRI) is time consuming and always requires an expert person; therefore, researchers introduced several computerized techniques using computer vision methods. The recent computerized techniques face some challenges, such as low contrast CTX images, the manual initialization of hyperparameters, and redundant features that mislead the classification accuracy.In this paper, we proposed a novel framework for COVID-19 classification using deep Bayesian optimization and improved canonical correlation analysis (ICCA). In this proposed framework, we initially performed data augmentation for better training of the selected deep models. After that, two pre-trained deep models were employed (ResNet50 and InceptionV3) and trained using transfer learning. The hyperparameters of both models were initialized through Bayesian optimization. Both trained models were utilized for feature extractions and fused using an ICCA-based approach. The fused features were further optimized using an improved tree growth optimization algorithm that finally was classified using a neural network classifier.The experimental process was conducted on five publically available datasets and achieved an accuracy of 99.6, 98.5, 99.9, 99.5, and 100%.The comparison with recent methods and t-test-based analysis showed the significance of this proposed framework." @default.
- W4313361170 created "2023-01-06" @default.
- W4313361170 creator A5000028489 @default.
- W4313361170 creator A5004989050 @default.
- W4313361170 creator A5014832215 @default.
- W4313361170 creator A5046098314 @default.
- W4313361170 creator A5054581568 @default.
- W4313361170 creator A5067940140 @default.
- W4313361170 creator A5071045096 @default.
- W4313361170 creator A5083593624 @default.
- W4313361170 date "2022-12-29" @default.
- W4313361170 modified "2023-10-17" @default.
- W4313361170 title "D2BOF-COVIDNet: A Framework of Deep Bayesian Optimization and Fusion-Assisted Optimal Deep Features for COVID-19 Classification Using Chest X-ray and MRI Scans" @default.
- W4313361170 cites W2113890143 @default.
- W4313361170 cites W2194775991 @default.
- W4313361170 cites W2364767533 @default.
- W4313361170 cites W2798843784 @default.
- W4313361170 cites W2799991731 @default.
- W4313361170 cites W2903899730 @default.
- W4313361170 cites W3001897055 @default.
- W4313361170 cites W3009231370 @default.
- W4313361170 cites W3011974631 @default.
- W4313361170 cites W3015538848 @default.
- W4313361170 cites W3016427339 @default.
- W4313361170 cites W3024740627 @default.
- W4313361170 cites W3028852288 @default.
- W4313361170 cites W3046009847 @default.
- W4313361170 cites W3081981736 @default.
- W4313361170 cites W3093172727 @default.
- W4313361170 cites W3101606529 @default.
- W4313361170 cites W3106027361 @default.
- W4313361170 cites W3116326107 @default.
- W4313361170 cites W3119045898 @default.
- W4313361170 cites W3128914156 @default.
- W4313361170 cites W3130844452 @default.
- W4313361170 cites W3133191822 @default.
- W4313361170 cites W3135096391 @default.
- W4313361170 cites W3176429669 @default.
- W4313361170 cites W3176727534 @default.
- W4313361170 cites W3178408859 @default.
- W4313361170 cites W3179841826 @default.
- W4313361170 cites W3182515684 @default.
- W4313361170 cites W3191359713 @default.
- W4313361170 cites W3195881073 @default.
- W4313361170 cites W3197318105 @default.
- W4313361170 cites W3199999289 @default.
- W4313361170 cites W3206409898 @default.
- W4313361170 cites W3209319880 @default.
- W4313361170 cites W3213533099 @default.
- W4313361170 cites W4200052220 @default.
- W4313361170 cites W4206930139 @default.
- W4313361170 cites W4210510150 @default.
- W4313361170 cites W4213390837 @default.
- W4313361170 cites W4221130444 @default.
- W4313361170 cites W4225273885 @default.
- W4313361170 cites W4226198799 @default.
- W4313361170 cites W4226203083 @default.
- W4313361170 cites W4283217173 @default.
- W4313361170 cites W4285495288 @default.
- W4313361170 cites W4288081728 @default.
- W4313361170 cites W4293248203 @default.
- W4313361170 cites W4293660884 @default.
- W4313361170 cites W4296951997 @default.
- W4313361170 cites W4306916468 @default.
- W4313361170 cites W4307091672 @default.
- W4313361170 cites W4309905398 @default.
- W4313361170 doi "https://doi.org/10.3390/diagnostics13010101" @default.
- W4313361170 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36611393" @default.
- W4313361170 hasPublicationYear "2022" @default.
- W4313361170 type Work @default.
- W4313361170 citedByCount "11" @default.
- W4313361170 countsByYear W43133611702023 @default.
- W4313361170 crossrefType "journal-article" @default.
- W4313361170 hasAuthorship W4313361170A5000028489 @default.
- W4313361170 hasAuthorship W4313361170A5004989050 @default.
- W4313361170 hasAuthorship W4313361170A5014832215 @default.
- W4313361170 hasAuthorship W4313361170A5046098314 @default.
- W4313361170 hasAuthorship W4313361170A5054581568 @default.
- W4313361170 hasAuthorship W4313361170A5067940140 @default.
- W4313361170 hasAuthorship W4313361170A5071045096 @default.
- W4313361170 hasAuthorship W4313361170A5083593624 @default.
- W4313361170 hasBestOaLocation W43133611701 @default.
- W4313361170 hasConcept C107673813 @default.
- W4313361170 hasConcept C108583219 @default.
- W4313361170 hasConcept C114466953 @default.
- W4313361170 hasConcept C119857082 @default.
- W4313361170 hasConcept C12267149 @default.
- W4313361170 hasConcept C138885662 @default.
- W4313361170 hasConcept C150899416 @default.
- W4313361170 hasConcept C153180895 @default.
- W4313361170 hasConcept C154945302 @default.
- W4313361170 hasConcept C199360897 @default.
- W4313361170 hasConcept C2776401178 @default.
- W4313361170 hasConcept C2778049539 @default.
- W4313361170 hasConcept C41008148 @default.
- W4313361170 hasConcept C41895202 @default.
- W4313361170 hasConcept C50644808 @default.
- W4313361170 hasConcept C52001869 @default.