Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313361314> ?p ?o ?g. }
- W4313361314 endingPage "111" @default.
- W4313361314 startingPage "111" @default.
- W4313361314 abstract "Heart disease is one of the leading causes of mortality throughout the world. Among the different heart diagnosis techniques, an electrocardiogram (ECG) is the least expensive non-invasive procedure. However, the following are challenges: the scarcity of medical experts, the complexity of ECG interpretations, the manifestation similarities of heart disease in ECG signals, and heart disease comorbidity. Machine learning algorithms are viable alternatives to the traditional diagnoses of heart disease from ECG signals. However, the black box nature of complex machine learning algorithms and the difficulty in explaining a model’s outcomes are obstacles for medical practitioners in having confidence in machine learning models. This observation paves the way for interpretable machine learning (IML) models as diagnostic tools that can build a physician’s trust and provide evidence-based diagnoses. Therefore, in this systematic literature review, we studied and analyzed the research landscape in interpretable machine learning techniques by focusing on heart disease diagnosis from an ECG signal. In this regard, the contribution of our work is manifold; first, we present an elaborate discussion on interpretable machine learning techniques. In addition, we identify and characterize ECG signal recording datasets that are readily available for machine learning-based tasks. Furthermore, we identify the progress that has been achieved in ECG signal interpretation using IML techniques. Finally, we discuss the limitations and challenges of IML techniques in interpreting ECG signals." @default.
- W4313361314 created "2023-01-06" @default.
- W4313361314 creator A5005289592 @default.
- W4313361314 creator A5019625671 @default.
- W4313361314 creator A5066768276 @default.
- W4313361314 creator A5078096723 @default.
- W4313361314 date "2022-12-29" @default.
- W4313361314 modified "2023-09-25" @default.
- W4313361314 title "Interpretable Machine Learning Techniques in ECG-Based Heart Disease Classification: A Systematic Review" @default.
- W4313361314 cites W1978218208 @default.
- W4313361314 cites W2047098613 @default.
- W4313361314 cites W2117553021 @default.
- W4313361314 cites W2128770864 @default.
- W4313361314 cites W2135533595 @default.
- W4313361314 cites W2162800060 @default.
- W4313361314 cites W2282821441 @default.
- W4313361314 cites W2295107390 @default.
- W4313361314 cites W2477001453 @default.
- W4313361314 cites W2604452154 @default.
- W4313361314 cites W2608727547 @default.
- W4313361314 cites W2657631929 @default.
- W4313361314 cites W2738231673 @default.
- W4313361314 cites W2747849569 @default.
- W4313361314 cites W2764024122 @default.
- W4313361314 cites W2794550444 @default.
- W4313361314 cites W2800884944 @default.
- W4313361314 cites W2888456553 @default.
- W4313361314 cites W2900791251 @default.
- W4313361314 cites W2902644322 @default.
- W4313361314 cites W2904957220 @default.
- W4313361314 cites W2910705748 @default.
- W4313361314 cites W2916797267 @default.
- W4313361314 cites W2942524699 @default.
- W4313361314 cites W2953193031 @default.
- W4313361314 cites W2962511854 @default.
- W4313361314 cites W2963214037 @default.
- W4313361314 cites W2964303497 @default.
- W4313361314 cites W2965435808 @default.
- W4313361314 cites W2966218717 @default.
- W4313361314 cites W2967879902 @default.
- W4313361314 cites W2969476445 @default.
- W4313361314 cites W2970801625 @default.
- W4313361314 cites W2972055048 @default.
- W4313361314 cites W2972744877 @default.
- W4313361314 cites W2979570803 @default.
- W4313361314 cites W2981731882 @default.
- W4313361314 cites W2988437828 @default.
- W4313361314 cites W2996061341 @default.
- W4313361314 cites W2997428643 @default.
- W4313361314 cites W2999069903 @default.
- W4313361314 cites W3005086430 @default.
- W4313361314 cites W3006339384 @default.
- W4313361314 cites W3009460750 @default.
- W4313361314 cites W3012063106 @default.
- W4313361314 cites W3012430016 @default.
- W4313361314 cites W3012755169 @default.
- W4313361314 cites W3013435687 @default.
- W4313361314 cites W3023766558 @default.
- W4313361314 cites W3027572331 @default.
- W4313361314 cites W3049106197 @default.
- W4313361314 cites W3084228385 @default.
- W4313361314 cites W3084949122 @default.
- W4313361314 cites W3088459955 @default.
- W4313361314 cites W3090286224 @default.
- W4313361314 cites W3092302756 @default.
- W4313361314 cites W3093397767 @default.
- W4313361314 cites W3096328183 @default.
- W4313361314 cites W3098699929 @default.
- W4313361314 cites W3099085560 @default.
- W4313361314 cites W3108118145 @default.
- W4313361314 cites W3109676774 @default.
- W4313361314 cites W3119117976 @default.
- W4313361314 cites W3119640832 @default.
- W4313361314 cites W3121562452 @default.
- W4313361314 cites W3123173991 @default.
- W4313361314 cites W3123497531 @default.
- W4313361314 cites W3127657277 @default.
- W4313361314 cites W3129167842 @default.
- W4313361314 cites W3130185945 @default.
- W4313361314 cites W3130693295 @default.
- W4313361314 cites W3131687983 @default.
- W4313361314 cites W3132191748 @default.
- W4313361314 cites W3133313394 @default.
- W4313361314 cites W3133543405 @default.
- W4313361314 cites W3133814784 @default.
- W4313361314 cites W3142998727 @default.
- W4313361314 cites W3146613606 @default.
- W4313361314 cites W3153087068 @default.
- W4313361314 cites W3154853263 @default.
- W4313361314 cites W3158073010 @default.
- W4313361314 cites W3158572575 @default.
- W4313361314 cites W3159922281 @default.
- W4313361314 cites W3160269558 @default.
- W4313361314 cites W3163645474 @default.
- W4313361314 cites W3164408946 @default.
- W4313361314 cites W3167976525 @default.
- W4313361314 cites W3169203486 @default.
- W4313361314 cites W3171211408 @default.