Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313361326> ?p ?o ?g. }
- W4313361326 endingPage "7" @default.
- W4313361326 startingPage "7" @default.
- W4313361326 abstract "Protected areas (PA) play an important role in minimizing the effects of soil erosion in watersheds. This study evaluated the performance of machine learning models, specifically support vector machine with linear kernel (SVMLinear), support vector machine with polynomial kernel (SVMPoly), and random forest (RF), on identifying indicators of soil erosion in 761 sub-watersheds and PA in northern Portugal, by using soil erosion by water in Europe, according to the revised universal soil loss equation (RUSLE2015), as target variable. The parameters analyzed were: soil erosion by water in Europe according to the revised universal soil loss equation (RUSLE2015), total burned area of the sub-watershed in the period of 1975-2020, fire recurrence, topographic wetness index (TWI), and the morphometric factors, namely area (A), perimeter (P), length (L), width (W), orientation (O), elongation ratio (Re), circularity ratio (Rc), compactness coefficient (Cc), form factor (Ff), shape factor (Sf), DEM, slope, and curvature. The median coefficient of determination (R2) for each model was RF (0.61), SVMpoly (0.68), and SVMLinear (0.54). Regarding the analyzed parameters, those that registered the greatest importance were A, P, L, W, curvature, and burned area, indicating that an analysis which considers morphometric factors, together with soil erosion data affected by water and soil moisture, is an important indicator in the analysis of soil erosion in watersheds." @default.
- W4313361326 created "2023-01-06" @default.
- W4313361326 creator A5006884202 @default.
- W4313361326 creator A5023788146 @default.
- W4313361326 creator A5028673313 @default.
- W4313361326 creator A5044736758 @default.
- W4313361326 creator A5046433642 @default.
- W4313361326 creator A5047740346 @default.
- W4313361326 date "2022-12-28" @default.
- W4313361326 modified "2023-10-06" @default.
- W4313361326 title "Soil Erosion Quantification using Machine Learning in Sub-Watersheds of Northern Portugal" @default.
- W4313361326 cites W1483105054 @default.
- W4313361326 cites W1963481993 @default.
- W4313361326 cites W1964212767 @default.
- W4313361326 cites W1973874914 @default.
- W4313361326 cites W1984065426 @default.
- W4313361326 cites W1984118990 @default.
- W4313361326 cites W1993284672 @default.
- W4313361326 cites W1997123763 @default.
- W4313361326 cites W2020664133 @default.
- W4313361326 cites W2030968905 @default.
- W4313361326 cites W2049987179 @default.
- W4313361326 cites W2063400418 @default.
- W4313361326 cites W2071226578 @default.
- W4313361326 cites W210517990 @default.
- W4313361326 cites W2110725023 @default.
- W4313361326 cites W2112120006 @default.
- W4313361326 cites W2112891417 @default.
- W4313361326 cites W2120490269 @default.
- W4313361326 cites W2132279668 @default.
- W4313361326 cites W2136780330 @default.
- W4313361326 cites W2151793878 @default.
- W4313361326 cites W2157625180 @default.
- W4313361326 cites W2166402853 @default.
- W4313361326 cites W2473153415 @default.
- W4313361326 cites W2479900372 @default.
- W4313361326 cites W2485143290 @default.
- W4313361326 cites W2518344946 @default.
- W4313361326 cites W2534775677 @default.
- W4313361326 cites W2564503284 @default.
- W4313361326 cites W2625796330 @default.
- W4313361326 cites W2757787785 @default.
- W4313361326 cites W2764015618 @default.
- W4313361326 cites W2790798007 @default.
- W4313361326 cites W2792580791 @default.
- W4313361326 cites W2793010664 @default.
- W4313361326 cites W2911688499 @default.
- W4313361326 cites W2944555348 @default.
- W4313361326 cites W2982479401 @default.
- W4313361326 cites W3003966917 @default.
- W4313361326 cites W3009832495 @default.
- W4313361326 cites W3016817661 @default.
- W4313361326 cites W3042091043 @default.
- W4313361326 cites W3042612344 @default.
- W4313361326 cites W3125427163 @default.
- W4313361326 cites W3132075313 @default.
- W4313361326 cites W3132382781 @default.
- W4313361326 cites W3134566500 @default.
- W4313361326 cites W3156592915 @default.
- W4313361326 cites W3157775668 @default.
- W4313361326 cites W3165326719 @default.
- W4313361326 cites W3170281356 @default.
- W4313361326 cites W3176554196 @default.
- W4313361326 cites W3184086633 @default.
- W4313361326 cites W3185032533 @default.
- W4313361326 cites W3193993139 @default.
- W4313361326 cites W3197354770 @default.
- W4313361326 cites W3197707026 @default.
- W4313361326 cites W3209381702 @default.
- W4313361326 cites W4200075961 @default.
- W4313361326 cites W4283805875 @default.
- W4313361326 cites W4285499851 @default.
- W4313361326 cites W4289130758 @default.
- W4313361326 cites W4301301213 @default.
- W4313361326 cites W830497018 @default.
- W4313361326 doi "https://doi.org/10.3390/hydrology10010007" @default.
- W4313361326 hasPublicationYear "2022" @default.
- W4313361326 type Work @default.
- W4313361326 citedByCount "3" @default.
- W4313361326 countsByYear W43133613262023 @default.
- W4313361326 crossrefType "journal-article" @default.
- W4313361326 hasAuthorship W4313361326A5006884202 @default.
- W4313361326 hasAuthorship W4313361326A5023788146 @default.
- W4313361326 hasAuthorship W4313361326A5028673313 @default.
- W4313361326 hasAuthorship W4313361326A5044736758 @default.
- W4313361326 hasAuthorship W4313361326A5046433642 @default.
- W4313361326 hasAuthorship W4313361326A5047740346 @default.
- W4313361326 hasBestOaLocation W43133613261 @default.
- W4313361326 hasConcept C114793014 @default.
- W4313361326 hasConcept C119857082 @default.
- W4313361326 hasConcept C123157820 @default.
- W4313361326 hasConcept C127313418 @default.
- W4313361326 hasConcept C150547873 @default.
- W4313361326 hasConcept C159390177 @default.
- W4313361326 hasConcept C181843262 @default.
- W4313361326 hasConcept C187320778 @default.
- W4313361326 hasConcept C195065555 @default.
- W4313361326 hasConcept C2524010 @default.