Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313361881> ?p ?o ?g. }
- W4313361881 endingPage "368" @default.
- W4313361881 startingPage "368" @default.
- W4313361881 abstract "Most modern Earth and Universe observation spacecraft are now equipped with large lightweight and flexible structures, such as antennas, telescopes, and extendable elements. The trend of hosting more complex and bigger appendages, essential for high-precision scientific applications, made orbiting satellites more susceptible to performance loss or degradation due to structural damages. In this scenario, Structural Health Monitoring strategies can be used to evaluate the health status of satellite substructures. However, in particular when analysing large appendages, traditional approaches may not be sufficient to identify local damages, as they will generally induce less observable changes in the system dynamics yet cause a relevant loss of payload data and information. This paper proposes a deep neural network to detect failures and investigate sensor sensitivity to damage classification for an orbiting satellite hosting a distributed network of accelerometers on a large mesh reflector antenna. The sensors-acquired time series are generated by using a fully coupled 3D simulator of the in-orbit attitude behaviour of a flexible satellite, whose appendages are modelled by using finite element techniques. The machine learning architecture is then trained and tested by using the sensors' responses gathered in a composite scenario, including not only the complete failure of a structural element (structural break) but also an intermediate level of structural damage. The proposed deep learning framework and sensors configuration proved to accurately detect failures in the most critical area or the structure while opening new investigation possibilities regarding geometrical properties and sensor distribution." @default.
- W4313361881 created "2023-01-06" @default.
- W4313361881 creator A5015796693 @default.
- W4313361881 creator A5019400479 @default.
- W4313361881 creator A5052397999 @default.
- W4313361881 creator A5053011045 @default.
- W4313361881 creator A5061436127 @default.
- W4313361881 date "2022-12-29" @default.
- W4313361881 modified "2023-09-30" @default.
- W4313361881 title "A Study on Structural Health Monitoring of a Large Space Antenna via Distributed Sensors and Deep Learning" @default.
- W4313361881 cites W1504280879 @default.
- W4313361881 cites W1806423741 @default.
- W4313361881 cites W1966748393 @default.
- W4313361881 cites W1982623967 @default.
- W4313361881 cites W1983394536 @default.
- W4313361881 cites W1990181132 @default.
- W4313361881 cites W2004677107 @default.
- W4313361881 cites W2007963773 @default.
- W4313361881 cites W2031353117 @default.
- W4313361881 cites W2036035861 @default.
- W4313361881 cites W2041016025 @default.
- W4313361881 cites W2044577507 @default.
- W4313361881 cites W2072998948 @default.
- W4313361881 cites W2076578526 @default.
- W4313361881 cites W2090915443 @default.
- W4313361881 cites W2094363207 @default.
- W4313361881 cites W2094892747 @default.
- W4313361881 cites W2139738355 @default.
- W4313361881 cites W2144091552 @default.
- W4313361881 cites W2267680422 @default.
- W4313361881 cites W2469032154 @default.
- W4313361881 cites W2504005437 @default.
- W4313361881 cites W2517929327 @default.
- W4313361881 cites W2620613902 @default.
- W4313361881 cites W2811237467 @default.
- W4313361881 cites W2909256650 @default.
- W4313361881 cites W2911081702 @default.
- W4313361881 cites W2945813834 @default.
- W4313361881 cites W2964010366 @default.
- W4313361881 cites W2969438037 @default.
- W4313361881 cites W2990763005 @default.
- W4313361881 cites W3007075806 @default.
- W4313361881 cites W3024327386 @default.
- W4313361881 cites W3034492349 @default.
- W4313361881 cites W3107881036 @default.
- W4313361881 cites W3119065990 @default.
- W4313361881 cites W3120773614 @default.
- W4313361881 cites W3135794967 @default.
- W4313361881 cites W3155495436 @default.
- W4313361881 cites W3192675769 @default.
- W4313361881 cites W3210478004 @default.
- W4313361881 cites W4281852071 @default.
- W4313361881 cites W4286268952 @default.
- W4313361881 cites W4313201584 @default.
- W4313361881 cites W4313361881 @default.
- W4313361881 doi "https://doi.org/10.3390/s23010368" @default.
- W4313361881 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36616966" @default.
- W4313361881 hasPublicationYear "2022" @default.
- W4313361881 type Work @default.
- W4313361881 citedByCount "5" @default.
- W4313361881 countsByYear W43133618812022 @default.
- W4313361881 countsByYear W43133618812023 @default.
- W4313361881 crossrefType "journal-article" @default.
- W4313361881 hasAuthorship W4313361881A5015796693 @default.
- W4313361881 hasAuthorship W4313361881A5019400479 @default.
- W4313361881 hasAuthorship W4313361881A5052397999 @default.
- W4313361881 hasAuthorship W4313361881A5053011045 @default.
- W4313361881 hasAuthorship W4313361881A5061436127 @default.
- W4313361881 hasBestOaLocation W43133618811 @default.
- W4313361881 hasConcept C108583219 @default.
- W4313361881 hasConcept C127313418 @default.
- W4313361881 hasConcept C127413603 @default.
- W4313361881 hasConcept C134066672 @default.
- W4313361881 hasConcept C146978453 @default.
- W4313361881 hasConcept C154945302 @default.
- W4313361881 hasConcept C158379750 @default.
- W4313361881 hasConcept C187107819 @default.
- W4313361881 hasConcept C19269812 @default.
- W4313361881 hasConcept C21822782 @default.
- W4313361881 hasConcept C24590314 @default.
- W4313361881 hasConcept C2776247918 @default.
- W4313361881 hasConcept C29829512 @default.
- W4313361881 hasConcept C31258907 @default.
- W4313361881 hasConcept C41008148 @default.
- W4313361881 hasConcept C62649853 @default.
- W4313361881 hasConcept C66938386 @default.
- W4313361881 hasConcept C76155785 @default.
- W4313361881 hasConcept C79403827 @default.
- W4313361881 hasConceptScore W4313361881C108583219 @default.
- W4313361881 hasConceptScore W4313361881C127313418 @default.
- W4313361881 hasConceptScore W4313361881C127413603 @default.
- W4313361881 hasConceptScore W4313361881C134066672 @default.
- W4313361881 hasConceptScore W4313361881C146978453 @default.
- W4313361881 hasConceptScore W4313361881C154945302 @default.
- W4313361881 hasConceptScore W4313361881C158379750 @default.
- W4313361881 hasConceptScore W4313361881C187107819 @default.
- W4313361881 hasConceptScore W4313361881C19269812 @default.
- W4313361881 hasConceptScore W4313361881C21822782 @default.