Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313362025> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4313362025 endingPage "10" @default.
- W4313362025 startingPage "10" @default.
- W4313362025 abstract "We devise a hierarchical decision-making architecture for portfolio optimization on multiple markets. At the highest level a Deep Reinforcement Learning (DRL) agent selects among a number of discrete actions, representing low-level agents. For the low-level agents, we use a set of Hierarchical Risk Parity (HRP) and Hierarchical Equal Risk Contribution (HERC) models with different hyperparameters, which all run in parallel, off-market (in a simulation). The information on which the DRL agent decides which of the low-level agents should act next is constituted by the stacking of the recent performances of all agents. Thus, the modelling resembles a statefull, non-stationary, multi-arm bandit, where the performance of the individual arms changes with time and is assumed to be dependent on the recent history. We perform experiments on the cryptocurrency market (117 assets), on the stock market (46 assets) and on the foreign exchange market (28 pairs) showing the excellent robustness and performance of the overall system. Moreover, we eliminate the need for retraining and are able to deal with large testing sets successfully." @default.
- W4313362025 created "2023-01-06" @default.
- W4313362025 creator A5058087229 @default.
- W4313362025 creator A5079149274 @default.
- W4313362025 date "2022-12-29" @default.
- W4313362025 modified "2023-09-26" @default.
- W4313362025 title "Using Deep Reinforcement Learning with Hierarchical Risk Parity for Portfolio Optimization" @default.
- W4313362025 cites W2073103707 @default.
- W4313362025 cites W2138490239 @default.
- W4313362025 cites W2145339207 @default.
- W4313362025 cites W2157903047 @default.
- W4313362025 cites W2165408259 @default.
- W4313362025 cites W2344786740 @default.
- W4313362025 cites W2472781479 @default.
- W4313362025 cites W2963467914 @default.
- W4313362025 cites W2966021938 @default.
- W4313362025 cites W3009099305 @default.
- W4313362025 cites W3012223895 @default.
- W4313362025 cites W3088545074 @default.
- W4313362025 cites W3121290254 @default.
- W4313362025 cites W3122780569 @default.
- W4313362025 cites W3124443460 @default.
- W4313362025 cites W3124458696 @default.
- W4313362025 cites W3125366755 @default.
- W4313362025 cites W3126577088 @default.
- W4313362025 cites W3180585540 @default.
- W4313362025 cites W3180668380 @default.
- W4313362025 cites W3210203197 @default.
- W4313362025 doi "https://doi.org/10.3390/ijfs11010010" @default.
- W4313362025 hasPublicationYear "2022" @default.
- W4313362025 type Work @default.
- W4313362025 citedByCount "1" @default.
- W4313362025 countsByYear W43133620252023 @default.
- W4313362025 crossrefType "journal-article" @default.
- W4313362025 hasAuthorship W4313362025A5058087229 @default.
- W4313362025 hasAuthorship W4313362025A5079149274 @default.
- W4313362025 hasBestOaLocation W43133620251 @default.
- W4313362025 hasConcept C106159729 @default.
- W4313362025 hasConcept C149782125 @default.
- W4313362025 hasConcept C154945302 @default.
- W4313362025 hasConcept C162324750 @default.
- W4313362025 hasConcept C202655437 @default.
- W4313362025 hasConcept C2780821815 @default.
- W4313362025 hasConcept C41008148 @default.
- W4313362025 hasConcept C8642999 @default.
- W4313362025 hasConcept C97541855 @default.
- W4313362025 hasConceptScore W4313362025C106159729 @default.
- W4313362025 hasConceptScore W4313362025C149782125 @default.
- W4313362025 hasConceptScore W4313362025C154945302 @default.
- W4313362025 hasConceptScore W4313362025C162324750 @default.
- W4313362025 hasConceptScore W4313362025C202655437 @default.
- W4313362025 hasConceptScore W4313362025C2780821815 @default.
- W4313362025 hasConceptScore W4313362025C41008148 @default.
- W4313362025 hasConceptScore W4313362025C8642999 @default.
- W4313362025 hasConceptScore W4313362025C97541855 @default.
- W4313362025 hasFunder F4320334627 @default.
- W4313362025 hasIssue "1" @default.
- W4313362025 hasLocation W43133620251 @default.
- W4313362025 hasLocation W43133620252 @default.
- W4313362025 hasOpenAccess W4313362025 @default.
- W4313362025 hasPrimaryLocation W43133620251 @default.
- W4313362025 hasRelatedWork W2147461958 @default.
- W4313362025 hasRelatedWork W3037177608 @default.
- W4313362025 hasRelatedWork W3043676650 @default.
- W4313362025 hasRelatedWork W3096123305 @default.
- W4313362025 hasRelatedWork W3145574834 @default.
- W4313362025 hasRelatedWork W3184140859 @default.
- W4313362025 hasRelatedWork W4283806302 @default.
- W4313362025 hasRelatedWork W4294612823 @default.
- W4313362025 hasRelatedWork W4301009730 @default.
- W4313362025 hasRelatedWork W4321850169 @default.
- W4313362025 hasVolume "11" @default.
- W4313362025 isParatext "false" @default.
- W4313362025 isRetracted "false" @default.
- W4313362025 workType "article" @default.