Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313362171> ?p ?o ?g. }
- W4313362171 endingPage "75" @default.
- W4313362171 startingPage "75" @default.
- W4313362171 abstract "Extensive amount of research on additively manufactured (AM) lattice structures has been made to develop a generalized model that can interpret how strongly operational variables affect mechanical properties. However, the currently used techniques such as physics models and multi-physics simulations provide a specific interpretation of those qualities, and are not general enough to assess the mechanical properties of AM lattice structures of different topologies produced on different materials via several fabrication methods. To tackle this problem, this study develops an optimal deep learning (DL) model based on more than 4000 data points, which has been optimized by analyzing three different hyper-parameters optimization schemes including gradient boost regression trees (GBRT), gaussian process (GP), and random forest (RF) with different data distribution schemes such as normal distribution, nth root transformation, and robust scaler. With the robust scaler and nth root transformation, the accuracy of the model increases from R2 = 0.85 (for simple distribution) to R2 = 0.94 and R2 = 0.88, respectively. After feature engineering and data correlation, the stress, unit cell size, total height, width, and relative density are chosen to be the input parameters to model the strain. The optimal DL model is able to predict the strain of different topologies of lattices (such as circular, octagonal, Gyroid, truncated cube, Truncated cuboctahedron, Rhombic do-decahedron, and many others) with decent accuracy (R2 = 0.936, MAE = 0.05, and MSE = 0.025). The parametric sensitivity analysis and explainable artificial intelligence (by using DeepSHAP library) based insights confirm that stress is the most sensitive input to the strain followed by the relative density from the modeling perspective of the AM lattices. The findings of this study would be helpful for the industry and the researchers to design AM lattice structures of different topologies for various engineering applications." @default.
- W4313362171 created "2023-01-06" @default.
- W4313362171 creator A5018180207 @default.
- W4313362171 creator A5020043778 @default.
- W4313362171 creator A5020542620 @default.
- W4313362171 creator A5028268549 @default.
- W4313362171 creator A5028710085 @default.
- W4313362171 creator A5049559793 @default.
- W4313362171 creator A5069320953 @default.
- W4313362171 creator A5084908295 @default.
- W4313362171 creator A5090536259 @default.
- W4313362171 date "2022-12-27" @default.
- W4313362171 modified "2023-10-02" @default.
- W4313362171 title "Evaluating the Stress-Strain Relationship of the Additively Manufactured Lattice Structures" @default.
- W4313362171 cites W1979214972 @default.
- W4313362171 cites W1988883510 @default.
- W4313362171 cites W1991743490 @default.
- W4313362171 cites W2061797321 @default.
- W4313362171 cites W2107034380 @default.
- W4313362171 cites W2293891022 @default.
- W4313362171 cites W2415288556 @default.
- W4313362171 cites W2622805139 @default.
- W4313362171 cites W2738397520 @default.
- W4313362171 cites W2783577348 @default.
- W4313362171 cites W2794148171 @default.
- W4313362171 cites W2804446681 @default.
- W4313362171 cites W2805583527 @default.
- W4313362171 cites W2903486599 @default.
- W4313362171 cites W2911964244 @default.
- W4313362171 cites W2945470091 @default.
- W4313362171 cites W3007394399 @default.
- W4313362171 cites W3025605929 @default.
- W4313362171 cites W3092397905 @default.
- W4313362171 cites W3128303562 @default.
- W4313362171 cites W3168678334 @default.
- W4313362171 cites W4200197633 @default.
- W4313362171 cites W4220931415 @default.
- W4313362171 cites W4245952513 @default.
- W4313362171 cites W4280585363 @default.
- W4313362171 cites W4281617125 @default.
- W4313362171 cites W4281776279 @default.
- W4313362171 cites W4282019015 @default.
- W4313362171 cites W4283077146 @default.
- W4313362171 cites W4289688420 @default.
- W4313362171 cites W4290000854 @default.
- W4313362171 cites W4295023997 @default.
- W4313362171 cites W4295203058 @default.
- W4313362171 cites W4296126464 @default.
- W4313362171 cites W4296746254 @default.
- W4313362171 cites W4297238080 @default.
- W4313362171 cites W4313145111 @default.
- W4313362171 cites W626376906 @default.
- W4313362171 doi "https://doi.org/10.3390/mi14010075" @default.
- W4313362171 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36677136" @default.
- W4313362171 hasPublicationYear "2022" @default.
- W4313362171 type Work @default.
- W4313362171 citedByCount "2" @default.
- W4313362171 countsByYear W43133621712023 @default.
- W4313362171 crossrefType "journal-article" @default.
- W4313362171 hasAuthorship W4313362171A5018180207 @default.
- W4313362171 hasAuthorship W4313362171A5020043778 @default.
- W4313362171 hasAuthorship W4313362171A5020542620 @default.
- W4313362171 hasAuthorship W4313362171A5028268549 @default.
- W4313362171 hasAuthorship W4313362171A5028710085 @default.
- W4313362171 hasAuthorship W4313362171A5049559793 @default.
- W4313362171 hasAuthorship W4313362171A5069320953 @default.
- W4313362171 hasAuthorship W4313362171A5084908295 @default.
- W4313362171 hasAuthorship W4313362171A5090536259 @default.
- W4313362171 hasBestOaLocation W43133621711 @default.
- W4313362171 hasConcept C105795698 @default.
- W4313362171 hasConcept C11413529 @default.
- W4313362171 hasConcept C114614502 @default.
- W4313362171 hasConcept C121332964 @default.
- W4313362171 hasConcept C121864883 @default.
- W4313362171 hasConcept C139945424 @default.
- W4313362171 hasConcept C163716315 @default.
- W4313362171 hasConcept C184720557 @default.
- W4313362171 hasConcept C186060115 @default.
- W4313362171 hasConcept C192562407 @default.
- W4313362171 hasConcept C203868755 @default.
- W4313362171 hasConcept C24890656 @default.
- W4313362171 hasConcept C2781204021 @default.
- W4313362171 hasConcept C28826006 @default.
- W4313362171 hasConcept C33923547 @default.
- W4313362171 hasConcept C62520636 @default.
- W4313362171 hasConcept C83546350 @default.
- W4313362171 hasConcept C86803240 @default.
- W4313362171 hasConceptScore W4313362171C105795698 @default.
- W4313362171 hasConceptScore W4313362171C11413529 @default.
- W4313362171 hasConceptScore W4313362171C114614502 @default.
- W4313362171 hasConceptScore W4313362171C121332964 @default.
- W4313362171 hasConceptScore W4313362171C121864883 @default.
- W4313362171 hasConceptScore W4313362171C139945424 @default.
- W4313362171 hasConceptScore W4313362171C163716315 @default.
- W4313362171 hasConceptScore W4313362171C184720557 @default.
- W4313362171 hasConceptScore W4313362171C186060115 @default.
- W4313362171 hasConceptScore W4313362171C192562407 @default.
- W4313362171 hasConceptScore W4313362171C203868755 @default.