Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313362202> ?p ?o ?g. }
- W4313362202 endingPage "92" @default.
- W4313362202 startingPage "92" @default.
- W4313362202 abstract "Detecting small defects against a complex surface is highly challenging but crucial to ensure product quality in industry sectors. However, in the detection performance of existing methods, there remains a huge gap in the localization and segmentation of small defects with limited sizes and extremely weak feature representation. To address the above issue, this paper presents a weighted matrix decomposition model (WMD) for small defect detection against a complex surface. Firstly, a weighted matrix is constructed based on texture characteristics of RGB channels in the defect image, which aims to improve contrast between defects and the background. Based on the sparse and low-rank characteristics of small defects, the weighted matrix is then decomposed into low-rank and sparse matrices corresponding to the redundant background and defect areas, respectively. Finally, an automatic threshold segmentation method is used to obtain the optimal threshold and accurately segment the defect areas and their edges in the sparse matrix. The experimental results show that the proposed model outperforms state-of-the-art methods under various quantitative evaluation metrics and has broad industrial application prospects." @default.
- W4313362202 created "2023-01-06" @default.
- W4313362202 creator A5024275301 @default.
- W4313362202 creator A5060461431 @default.
- W4313362202 creator A5061658371 @default.
- W4313362202 date "2022-12-29" @default.
- W4313362202 modified "2023-09-25" @default.
- W4313362202 title "Weighted Matrix Decomposition for Small Surface Defect Detection" @default.
- W4313362202 cites W1975869169 @default.
- W4313362202 cites W1986306729 @default.
- W4313362202 cites W1992117926 @default.
- W4313362202 cites W1993236041 @default.
- W4313362202 cites W1999736642 @default.
- W4313362202 cites W2003099669 @default.
- W4313362202 cites W2030747196 @default.
- W4313362202 cites W2031821661 @default.
- W4313362202 cites W2038886329 @default.
- W4313362202 cites W2054831422 @default.
- W4313362202 cites W2056642558 @default.
- W4313362202 cites W2065301447 @default.
- W4313362202 cites W2067173330 @default.
- W4313362202 cites W2092072518 @default.
- W4313362202 cites W2100470808 @default.
- W4313362202 cites W2133059825 @default.
- W4313362202 cites W2133665775 @default.
- W4313362202 cites W2153212352 @default.
- W4313362202 cites W2164653394 @default.
- W4313362202 cites W2170603032 @default.
- W4313362202 cites W2274280696 @default.
- W4313362202 cites W2286998565 @default.
- W4313362202 cites W2342910067 @default.
- W4313362202 cites W2588054711 @default.
- W4313362202 cites W2615908833 @default.
- W4313362202 cites W2616601017 @default.
- W4313362202 cites W2734129016 @default.
- W4313362202 cites W2734715312 @default.
- W4313362202 cites W2736973763 @default.
- W4313362202 cites W2784579114 @default.
- W4313362202 cites W2907868778 @default.
- W4313362202 cites W2913074553 @default.
- W4313362202 cites W2938060879 @default.
- W4313362202 cites W2945270739 @default.
- W4313362202 cites W2963529609 @default.
- W4313362202 cites W2967610771 @default.
- W4313362202 cites W2988072185 @default.
- W4313362202 cites W2988916019 @default.
- W4313362202 cites W2998291476 @default.
- W4313362202 cites W3009013436 @default.
- W4313362202 cites W3015335398 @default.
- W4313362202 cites W3023162134 @default.
- W4313362202 cites W3076634448 @default.
- W4313362202 cites W3123555486 @default.
- W4313362202 cites W3127080232 @default.
- W4313362202 cites W3174393839 @default.
- W4313362202 cites W3179632985 @default.
- W4313362202 cites W4220762544 @default.
- W4313362202 cites W4223952291 @default.
- W4313362202 cites W4281639515 @default.
- W4313362202 cites W4306765259 @default.
- W4313362202 doi "https://doi.org/10.3390/mi14010092" @default.
- W4313362202 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36677153" @default.
- W4313362202 hasPublicationYear "2022" @default.
- W4313362202 type Work @default.
- W4313362202 citedByCount "0" @default.
- W4313362202 crossrefType "journal-article" @default.
- W4313362202 hasAuthorship W4313362202A5024275301 @default.
- W4313362202 hasAuthorship W4313362202A5060461431 @default.
- W4313362202 hasAuthorship W4313362202A5061658371 @default.
- W4313362202 hasBestOaLocation W43133622021 @default.
- W4313362202 hasConcept C106487976 @default.
- W4313362202 hasConcept C11413529 @default.
- W4313362202 hasConcept C114614502 @default.
- W4313362202 hasConcept C121332964 @default.
- W4313362202 hasConcept C124066611 @default.
- W4313362202 hasConcept C124681953 @default.
- W4313362202 hasConcept C138885662 @default.
- W4313362202 hasConcept C153180895 @default.
- W4313362202 hasConcept C154945302 @default.
- W4313362202 hasConcept C158693339 @default.
- W4313362202 hasConcept C159985019 @default.
- W4313362202 hasConcept C163716315 @default.
- W4313362202 hasConcept C164226766 @default.
- W4313362202 hasConcept C17744445 @default.
- W4313362202 hasConcept C18903297 @default.
- W4313362202 hasConcept C192562407 @default.
- W4313362202 hasConcept C199539241 @default.
- W4313362202 hasConcept C2524010 @default.
- W4313362202 hasConcept C2776359362 @default.
- W4313362202 hasConcept C2776401178 @default.
- W4313362202 hasConcept C2776799497 @default.
- W4313362202 hasConcept C33923547 @default.
- W4313362202 hasConcept C41008148 @default.
- W4313362202 hasConcept C41895202 @default.
- W4313362202 hasConcept C42355184 @default.
- W4313362202 hasConcept C56372850 @default.
- W4313362202 hasConcept C62520636 @default.
- W4313362202 hasConcept C86803240 @default.
- W4313362202 hasConcept C89600930 @default.