Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313362370> ?p ?o ?g. }
- W4313362370 endingPage "40" @default.
- W4313362370 startingPage "40" @default.
- W4313362370 abstract "A weak singularity in the solution of time-fractional differential equations can degrade the accuracy of numerical methods when employing a uniform mesh, especially with schemes involving the Caputo derivative (order α,), where time accuracy is of the order (2−α) or (1+α). To deal with this problem, we present a second-order numerical scheme for nonlinear time–space fractional reaction–diffusion equations. For spatial resolution, we employ a matrix transfer technique. Using graded meshes in time, we improve the convergence rate of the algorithm. Furthermore, some sharp error estimates that give an optimal second-order rate of convergence are presented and proven. We discuss the stability properties of the numerical scheme and elaborate on several empirical examples that corroborate our theoretical observations." @default.
- W4313362370 created "2023-01-06" @default.
- W4313362370 creator A5004205634 @default.
- W4313362370 creator A5006866086 @default.
- W4313362370 creator A5013820469 @default.
- W4313362370 creator A5068017914 @default.
- W4313362370 creator A5075689698 @default.
- W4313362370 date "2022-12-30" @default.
- W4313362370 modified "2023-09-27" @default.
- W4313362370 title "A Second-Order Crank-Nicolson-Type Scheme for Nonlinear Space–Time Reaction–Diffusion Equations on Time-Graded Meshes" @default.
- W4313362370 cites W1978354679 @default.
- W4313362370 cites W1998424577 @default.
- W4313362370 cites W2034839545 @default.
- W4313362370 cites W2053757777 @default.
- W4313362370 cites W2062266804 @default.
- W4313362370 cites W2065232540 @default.
- W4313362370 cites W2070505112 @default.
- W4313362370 cites W2071268148 @default.
- W4313362370 cites W2088826361 @default.
- W4313362370 cites W2103469580 @default.
- W4313362370 cites W2111271983 @default.
- W4313362370 cites W2165076033 @default.
- W4313362370 cites W2340358137 @default.
- W4313362370 cites W2608656286 @default.
- W4313362370 cites W2612471483 @default.
- W4313362370 cites W2768739572 @default.
- W4313362370 cites W2791262273 @default.
- W4313362370 cites W2799821673 @default.
- W4313362370 cites W2889281424 @default.
- W4313362370 cites W2951384527 @default.
- W4313362370 cites W2963392111 @default.
- W4313362370 cites W3019004624 @default.
- W4313362370 cites W3041579101 @default.
- W4313362370 cites W3046939210 @default.
- W4313362370 cites W3100497057 @default.
- W4313362370 cites W3131690660 @default.
- W4313362370 cites W3142779614 @default.
- W4313362370 cites W3215387680 @default.
- W4313362370 cites W4241819982 @default.
- W4313362370 doi "https://doi.org/10.3390/fractalfract7010040" @default.
- W4313362370 hasPublicationYear "2022" @default.
- W4313362370 type Work @default.
- W4313362370 citedByCount "0" @default.
- W4313362370 crossrefType "journal-article" @default.
- W4313362370 hasAuthorship W4313362370A5004205634 @default.
- W4313362370 hasAuthorship W4313362370A5006866086 @default.
- W4313362370 hasAuthorship W4313362370A5013820469 @default.
- W4313362370 hasAuthorship W4313362370A5068017914 @default.
- W4313362370 hasAuthorship W4313362370A5075689698 @default.
- W4313362370 hasBestOaLocation W43133623701 @default.
- W4313362370 hasConcept C121231716 @default.
- W4313362370 hasConcept C121332964 @default.
- W4313362370 hasConcept C127162648 @default.
- W4313362370 hasConcept C130187892 @default.
- W4313362370 hasConcept C134306372 @default.
- W4313362370 hasConcept C152522140 @default.
- W4313362370 hasConcept C158622935 @default.
- W4313362370 hasConcept C16171025 @default.
- W4313362370 hasConcept C162324750 @default.
- W4313362370 hasConcept C17685861 @default.
- W4313362370 hasConcept C186219872 @default.
- W4313362370 hasConcept C2524010 @default.
- W4313362370 hasConcept C2777303404 @default.
- W4313362370 hasConcept C28826006 @default.
- W4313362370 hasConcept C31258907 @default.
- W4313362370 hasConcept C31487907 @default.
- W4313362370 hasConcept C33923547 @default.
- W4313362370 hasConcept C41008148 @default.
- W4313362370 hasConcept C48753275 @default.
- W4313362370 hasConcept C50522688 @default.
- W4313362370 hasConcept C51544822 @default.
- W4313362370 hasConcept C57869625 @default.
- W4313362370 hasConcept C62520636 @default.
- W4313362370 hasConcept C78045399 @default.
- W4313362370 hasConceptScore W4313362370C121231716 @default.
- W4313362370 hasConceptScore W4313362370C121332964 @default.
- W4313362370 hasConceptScore W4313362370C127162648 @default.
- W4313362370 hasConceptScore W4313362370C130187892 @default.
- W4313362370 hasConceptScore W4313362370C134306372 @default.
- W4313362370 hasConceptScore W4313362370C152522140 @default.
- W4313362370 hasConceptScore W4313362370C158622935 @default.
- W4313362370 hasConceptScore W4313362370C16171025 @default.
- W4313362370 hasConceptScore W4313362370C162324750 @default.
- W4313362370 hasConceptScore W4313362370C17685861 @default.
- W4313362370 hasConceptScore W4313362370C186219872 @default.
- W4313362370 hasConceptScore W4313362370C2524010 @default.
- W4313362370 hasConceptScore W4313362370C2777303404 @default.
- W4313362370 hasConceptScore W4313362370C28826006 @default.
- W4313362370 hasConceptScore W4313362370C31258907 @default.
- W4313362370 hasConceptScore W4313362370C31487907 @default.
- W4313362370 hasConceptScore W4313362370C33923547 @default.
- W4313362370 hasConceptScore W4313362370C41008148 @default.
- W4313362370 hasConceptScore W4313362370C48753275 @default.
- W4313362370 hasConceptScore W4313362370C50522688 @default.
- W4313362370 hasConceptScore W4313362370C51544822 @default.
- W4313362370 hasConceptScore W4313362370C57869625 @default.
- W4313362370 hasConceptScore W4313362370C62520636 @default.
- W4313362370 hasConceptScore W4313362370C78045399 @default.