Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313362593> ?p ?o ?g. }
- W4313362593 endingPage "70" @default.
- W4313362593 startingPage "70" @default.
- W4313362593 abstract "Enhancers are sequences with short motifs that exhibit high positional variability and free scattering properties. Identification of these noncoding DNA fragments and their strength are extremely important because they play a key role in controlling gene regulation on a cellular basis. The identification of enhancers is more complex than that of other factors in the genome because they are freely scattered, and their location varies widely. In recent years, bioinformatics tools have enabled significant improvement in identifying this biological difficulty. Cell line-specific screening is not possible using these existing computational methods based solely on DNA sequences. DNA segment chromatin accessibility may provide useful information about its potential function in regulation, thereby identifying regulatory elements based on its chromatin accessibility. In chromatin, the entanglement structure allows positions far apart in the sequence to encounter each other, regardless of their proximity to the gene to be acted upon. Thus, identifying enhancers and assessing their strength is difficult and time-consuming. The goal of our work was to overcome these limitations by presenting a convolutional neural network (CNN) with attention-gated recurrent units (AttGRU) based on Deep Learning. It used a CNN and one-hot coding to build models, primarily to identify enhancers and secondarily to classify their strength. To test the performance of the proposed model, parallels were drawn between enhancer-CNNAttGRU and existing state-of-the-art methods to enable comparisons. The proposed model performed the best for predicting stage one and stage two enhancer sequences, as well as their strengths, in a cross-species analysis, achieving best accuracy values of 87.39% and 84.46%, respectively. Overall, the results showed that the proposed model provided comparable results to state-of-the-art models, highlighting its usefulness." @default.
- W4313362593 created "2023-01-06" @default.
- W4313362593 creator A5024192822 @default.
- W4313362593 creator A5028758555 @default.
- W4313362593 creator A5029191317 @default.
- W4313362593 creator A5029955008 @default.
- W4313362593 creator A5047327490 @default.
- W4313362593 creator A5080301909 @default.
- W4313362593 date "2022-12-29" @default.
- W4313362593 modified "2023-09-30" @default.
- W4313362593 title "An Efficient Lightweight Hybrid Model with Attention Mechanism for Enhancer Sequence Recognition" @default.
- W4313362593 cites W1807324513 @default.
- W4313362593 cites W1977855308 @default.
- W4313362593 cites W1986865417 @default.
- W4313362593 cites W1988581590 @default.
- W4313362593 cites W1991740019 @default.
- W4313362593 cites W2016015848 @default.
- W4313362593 cites W2064675550 @default.
- W4313362593 cites W2097874743 @default.
- W4313362593 cites W2100990361 @default.
- W4313362593 cites W2128817132 @default.
- W4313362593 cites W2131774270 @default.
- W4313362593 cites W2140240158 @default.
- W4313362593 cites W2170747616 @default.
- W4313362593 cites W2409095766 @default.
- W4313362593 cites W2483962956 @default.
- W4313362593 cites W2565121836 @default.
- W4313362593 cites W2591130492 @default.
- W4313362593 cites W2766812108 @default.
- W4313362593 cites W2802765514 @default.
- W4313362593 cites W2807186140 @default.
- W4313362593 cites W2915815599 @default.
- W4313362593 cites W2964045325 @default.
- W4313362593 cites W2964199361 @default.
- W4313362593 cites W3007075806 @default.
- W4313362593 cites W3019339921 @default.
- W4313362593 cites W3077420696 @default.
- W4313362593 cites W3096505797 @default.
- W4313362593 cites W3096581305 @default.
- W4313362593 cites W3134384141 @default.
- W4313362593 cites W3153454949 @default.
- W4313362593 cites W3163100883 @default.
- W4313362593 cites W3164532901 @default.
- W4313362593 cites W3209048599 @default.
- W4313362593 cites W4200518680 @default.
- W4313362593 cites W4220953170 @default.
- W4313362593 cites W4282939357 @default.
- W4313362593 cites W4286252728 @default.
- W4313362593 cites W4292510792 @default.
- W4313362593 cites W4293069001 @default.
- W4313362593 cites W4296021822 @default.
- W4313362593 cites W4296126030 @default.
- W4313362593 cites W4296705332 @default.
- W4313362593 cites W4307262846 @default.
- W4313362593 cites W4308651916 @default.
- W4313362593 cites W3189760294 @default.
- W4313362593 doi "https://doi.org/10.3390/biom13010070" @default.
- W4313362593 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36671456" @default.
- W4313362593 hasPublicationYear "2022" @default.
- W4313362593 type Work @default.
- W4313362593 citedByCount "4" @default.
- W4313362593 countsByYear W43133625932023 @default.
- W4313362593 crossrefType "journal-article" @default.
- W4313362593 hasAuthorship W4313362593A5024192822 @default.
- W4313362593 hasAuthorship W4313362593A5028758555 @default.
- W4313362593 hasAuthorship W4313362593A5029191317 @default.
- W4313362593 hasAuthorship W4313362593A5029955008 @default.
- W4313362593 hasAuthorship W4313362593A5047327490 @default.
- W4313362593 hasAuthorship W4313362593A5080301909 @default.
- W4313362593 hasBestOaLocation W43133625931 @default.
- W4313362593 hasConcept C104317684 @default.
- W4313362593 hasConcept C105795698 @default.
- W4313362593 hasConcept C111936080 @default.
- W4313362593 hasConcept C116834253 @default.
- W4313362593 hasConcept C119857082 @default.
- W4313362593 hasConcept C154945302 @default.
- W4313362593 hasConcept C179518139 @default.
- W4313362593 hasConcept C33923547 @default.
- W4313362593 hasConcept C41008148 @default.
- W4313362593 hasConcept C54355233 @default.
- W4313362593 hasConcept C59822182 @default.
- W4313362593 hasConcept C70721500 @default.
- W4313362593 hasConcept C81363708 @default.
- W4313362593 hasConcept C83640560 @default.
- W4313362593 hasConcept C86339819 @default.
- W4313362593 hasConcept C86803240 @default.
- W4313362593 hasConceptScore W4313362593C104317684 @default.
- W4313362593 hasConceptScore W4313362593C105795698 @default.
- W4313362593 hasConceptScore W4313362593C111936080 @default.
- W4313362593 hasConceptScore W4313362593C116834253 @default.
- W4313362593 hasConceptScore W4313362593C119857082 @default.
- W4313362593 hasConceptScore W4313362593C154945302 @default.
- W4313362593 hasConceptScore W4313362593C179518139 @default.
- W4313362593 hasConceptScore W4313362593C33923547 @default.
- W4313362593 hasConceptScore W4313362593C41008148 @default.
- W4313362593 hasConceptScore W4313362593C54355233 @default.
- W4313362593 hasConceptScore W4313362593C59822182 @default.
- W4313362593 hasConceptScore W4313362593C70721500 @default.