Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313362603> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4313362603 endingPage "58" @default.
- W4313362603 startingPage "49" @default.
- W4313362603 abstract "Wellbore instability and sand production onset modeling are very affected by Sonic Shear Wave Time (SSW). In any field, SSW is not available for all wells due to the high cost of measuring. Many authors developed empirical correlations using information from selected worldwide fields for SSW prediction. Recently, researchers have used different Artificial Intelligence methods for estimating SSW. Three existing empirical correlations of Carroll, Freund, and Brocher are used to estimate SSW in this paper, while a fourth new empirical correlation is established. For comparing with the empirical correlation results, another study's Artificial Neural Network (ANN) was used. The same data that was adopted by the ANN study was used here where it is comprised of 1922 measured points of SSW and the other nine parameters of Gamma Ray, Compressional Sonic, Caliper, Neutron Log, Density Log, Deep Resistivity, Azimuth Angle, Inclination Angle, and True Vertical Depth from one Iraqi directional well. Three existing empirical correlations are based only on Compressional Sonic Wave Time (CSW) for predicting SSW. In the same way of developing previous correlations, a fourth empirical correlation was developed by using all measured data points of SSW and CSW. A comparison demonstrated that utilizing ANN was better for SSW predicting with a higher R2 equal to 0.966 and lower other statistical coefficients than utilizing four empirical correlations, where correlations of Carroll, Freund, Brocher, and developed fourth had R2 equal to 0.7826, 0.7636, 0.6764, and 0.8016, respectively, with other statistical parameters that show the new developed correlation best than the other three existing. The use of ANN or new developed correlation in future SSW calculations is relevant to decision makers due to a number of limitations and target SSW accuracy." @default.
- W4313362603 created "2023-01-06" @default.
- W4313362603 creator A5050231161 @default.
- W4313362603 creator A5060475186 @default.
- W4313362603 creator A5090481287 @default.
- W4313362603 date "2022-12-30" @default.
- W4313362603 modified "2023-10-18" @default.
- W4313362603 title "Comparison of Estimation Sonic Shear Wave Time Using Empirical Correlations and Artificial Neural Network" @default.
- W4313362603 doi "https://doi.org/10.31699/ijcpe.2022.4.7" @default.
- W4313362603 hasPublicationYear "2022" @default.
- W4313362603 type Work @default.
- W4313362603 citedByCount "0" @default.
- W4313362603 crossrefType "journal-article" @default.
- W4313362603 hasAuthorship W4313362603A5050231161 @default.
- W4313362603 hasAuthorship W4313362603A5060475186 @default.
- W4313362603 hasAuthorship W4313362603A5090481287 @default.
- W4313362603 hasBestOaLocation W43133626031 @default.
- W4313362603 hasConcept C117220453 @default.
- W4313362603 hasConcept C127313418 @default.
- W4313362603 hasConcept C133199616 @default.
- W4313362603 hasConcept C154945302 @default.
- W4313362603 hasConcept C159737794 @default.
- W4313362603 hasConcept C2524010 @default.
- W4313362603 hasConcept C33923547 @default.
- W4313362603 hasConcept C35817400 @default.
- W4313362603 hasConcept C41008148 @default.
- W4313362603 hasConcept C44154836 @default.
- W4313362603 hasConcept C50644808 @default.
- W4313362603 hasConcept C5900021 @default.
- W4313362603 hasConcept C8058405 @default.
- W4313362603 hasConcept C96035792 @default.
- W4313362603 hasConceptScore W4313362603C117220453 @default.
- W4313362603 hasConceptScore W4313362603C127313418 @default.
- W4313362603 hasConceptScore W4313362603C133199616 @default.
- W4313362603 hasConceptScore W4313362603C154945302 @default.
- W4313362603 hasConceptScore W4313362603C159737794 @default.
- W4313362603 hasConceptScore W4313362603C2524010 @default.
- W4313362603 hasConceptScore W4313362603C33923547 @default.
- W4313362603 hasConceptScore W4313362603C35817400 @default.
- W4313362603 hasConceptScore W4313362603C41008148 @default.
- W4313362603 hasConceptScore W4313362603C44154836 @default.
- W4313362603 hasConceptScore W4313362603C50644808 @default.
- W4313362603 hasConceptScore W4313362603C5900021 @default.
- W4313362603 hasConceptScore W4313362603C8058405 @default.
- W4313362603 hasConceptScore W4313362603C96035792 @default.
- W4313362603 hasIssue "4" @default.
- W4313362603 hasLocation W43133626031 @default.
- W4313362603 hasOpenAccess W4313362603 @default.
- W4313362603 hasPrimaryLocation W43133626031 @default.
- W4313362603 hasRelatedWork W1977097051 @default.
- W4313362603 hasRelatedWork W2093951728 @default.
- W4313362603 hasRelatedWork W2327958668 @default.
- W4313362603 hasRelatedWork W2358667978 @default.
- W4313362603 hasRelatedWork W2388750045 @default.
- W4313362603 hasRelatedWork W2596369320 @default.
- W4313362603 hasRelatedWork W2908646305 @default.
- W4313362603 hasRelatedWork W2985516353 @default.
- W4313362603 hasRelatedWork W4200459742 @default.
- W4313362603 hasRelatedWork W4255314321 @default.
- W4313362603 hasVolume "23" @default.
- W4313362603 isParatext "false" @default.
- W4313362603 isRetracted "false" @default.
- W4313362603 workType "article" @default.