Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313362713> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4313362713 endingPage "435" @default.
- W4313362713 startingPage "435" @default.
- W4313362713 abstract "The scheduled maintenance cost of warships is the essential prerequisite and economic foundation to guarantee the effective implementation of maintenance, which directly influences the quality and efficiency of maintenance operations. This paper proposes a multi-target regression algorithm based on multi-layer sparse structure (MTR-MLS) algorithm, to achieve simultaneous prediction of the subentry costs of warship scheduled maintenance, and the total cost of the maintenance is estimated by summing the predicted values of the different subentry costs. In MTR-MLS, the kernel technique is employed to map the inputs to the higher dimensional space for decoupling the complex input–output nonlinear relationships. By deploying the structure matrix, MTR-MLS achieves a latent variable model which can explicitly encode the inter-target correlations via l2,1-norm-based sparse learning. Meanwhile, the noises are encoded to diminish the influence of noises while exploiting the correlations among targets. An alternating optimization algorithm is proposed to solve the objective function. Extensive experimental evaluation on real-world datasets and datasets of warships scheduled maintenance cost show that the proposed method consistently outperforms the state-of-the-art algorithms, which demonstrates its great effectiveness for cost prediction of warships scheduled maintenance." @default.
- W4313362713 created "2023-01-06" @default.
- W4313362713 creator A5025189773 @default.
- W4313362713 creator A5029817092 @default.
- W4313362713 creator A5040578968 @default.
- W4313362713 date "2022-12-29" @default.
- W4313362713 modified "2023-10-14" @default.
- W4313362713 title "Multi-Target Regression Based on Multi-Layer Sparse Structure and Its Application in Warships Scheduled Maintenance Cost Prediction" @default.
- W4313362713 cites W1546444502 @default.
- W4313362713 cites W1914247575 @default.
- W4313362713 cites W1970085709 @default.
- W4313362713 cites W1984541063 @default.
- W4313362713 cites W2070322568 @default.
- W4313362713 cites W2097334502 @default.
- W4313362713 cites W2122347864 @default.
- W4313362713 cites W2596553325 @default.
- W4313362713 cites W2597701578 @default.
- W4313362713 cites W2966577296 @default.
- W4313362713 cites W3041031504 @default.
- W4313362713 cites W3047812935 @default.
- W4313362713 cites W3122418805 @default.
- W4313362713 cites W3202664685 @default.
- W4313362713 cites W4200372535 @default.
- W4313362713 cites W4206212643 @default.
- W4313362713 cites W4283816093 @default.
- W4313362713 doi "https://doi.org/10.3390/app13010435" @default.
- W4313362713 hasPublicationYear "2022" @default.
- W4313362713 type Work @default.
- W4313362713 citedByCount "0" @default.
- W4313362713 crossrefType "journal-article" @default.
- W4313362713 hasAuthorship W4313362713A5025189773 @default.
- W4313362713 hasAuthorship W4313362713A5029817092 @default.
- W4313362713 hasAuthorship W4313362713A5040578968 @default.
- W4313362713 hasBestOaLocation W43133627131 @default.
- W4313362713 hasConcept C124101348 @default.
- W4313362713 hasConcept C126255220 @default.
- W4313362713 hasConcept C127413603 @default.
- W4313362713 hasConcept C133731056 @default.
- W4313362713 hasConcept C154945302 @default.
- W4313362713 hasConcept C205606062 @default.
- W4313362713 hasConcept C33923547 @default.
- W4313362713 hasConcept C41008148 @default.
- W4313362713 hasConceptScore W4313362713C124101348 @default.
- W4313362713 hasConceptScore W4313362713C126255220 @default.
- W4313362713 hasConceptScore W4313362713C127413603 @default.
- W4313362713 hasConceptScore W4313362713C133731056 @default.
- W4313362713 hasConceptScore W4313362713C154945302 @default.
- W4313362713 hasConceptScore W4313362713C205606062 @default.
- W4313362713 hasConceptScore W4313362713C33923547 @default.
- W4313362713 hasConceptScore W4313362713C41008148 @default.
- W4313362713 hasIssue "1" @default.
- W4313362713 hasLocation W43133627131 @default.
- W4313362713 hasOpenAccess W4313362713 @default.
- W4313362713 hasPrimaryLocation W43133627131 @default.
- W4313362713 hasRelatedWork W1617565119 @default.
- W4313362713 hasRelatedWork W2004102934 @default.
- W4313362713 hasRelatedWork W2099777870 @default.
- W4313362713 hasRelatedWork W2152950565 @default.
- W4313362713 hasRelatedWork W2347219288 @default.
- W4313362713 hasRelatedWork W2366221835 @default.
- W4313362713 hasRelatedWork W2390279801 @default.
- W4313362713 hasRelatedWork W2512958550 @default.
- W4313362713 hasRelatedWork W2748952813 @default.
- W4313362713 hasRelatedWork W2899084033 @default.
- W4313362713 hasVolume "13" @default.
- W4313362713 isParatext "false" @default.
- W4313362713 isRetracted "false" @default.
- W4313362713 workType "article" @default.