Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313362722> ?p ?o ?g. }
- W4313362722 endingPage "110" @default.
- W4313362722 startingPage "110" @default.
- W4313362722 abstract "The increasing use of computed tomography (CT) and cone beam computed tomography (CBCT) in oral and maxillofacial imaging has driven the development of deep learning and radiomics applications to assist clinicians in early diagnosis, accurate prognosis prediction, and efficient treatment planning of maxillofacial diseases. This narrative review aimed to provide an up-to-date overview of the current applications of deep learning and radiomics on CT and CBCT for the diagnosis and management of maxillofacial diseases. Based on current evidence, a wide range of deep learning models on CT/CBCT images have been developed for automatic diagnosis, segmentation, and classification of jaw cysts and tumors, cervical lymph node metastasis, salivary gland diseases, temporomandibular (TMJ) disorders, maxillary sinus pathologies, mandibular fractures, and dentomaxillofacial deformities, while CT-/CBCT-derived radiomics applications mainly focused on occult lymph node metastasis in patients with oral cancer, malignant salivary gland tumors, and TMJ osteoarthritis. Most of these models showed high performance, and some of them even outperformed human experts. The models with performance on par with human experts have the potential to serve as clinically practicable tools to achieve the earliest possible diagnosis and treatment, leading to a more precise and personalized approach for the management of maxillofacial diseases. Challenges and issues, including the lack of the generalizability and explainability of deep learning models and the uncertainty in the reproducibility and stability of radiomic features, should be overcome to gain the trust of patients, providers, and healthcare organizers for daily clinical use of these models." @default.
- W4313362722 created "2023-01-06" @default.
- W4313362722 creator A5001261828 @default.
- W4313362722 creator A5001373380 @default.
- W4313362722 creator A5005567947 @default.
- W4313362722 creator A5018266809 @default.
- W4313362722 creator A5046100179 @default.
- W4313362722 creator A5070510981 @default.
- W4313362722 date "2022-12-29" @default.
- W4313362722 modified "2023-10-18" @default.
- W4313362722 title "Current Applications of Deep Learning and Radiomics on CT and CBCT for Maxillofacial Diseases" @default.
- W4313362722 cites W1956480801 @default.
- W4313362722 cites W2151631877 @default.
- W4313362722 cites W2593468720 @default.
- W4313362722 cites W2799369264 @default.
- W4313362722 cites W2886403459 @default.
- W4313362722 cites W2886695632 @default.
- W4313362722 cites W2896760986 @default.
- W4313362722 cites W2902954063 @default.
- W4313362722 cites W2910283668 @default.
- W4313362722 cites W2912871401 @default.
- W4313362722 cites W2914031129 @default.
- W4313362722 cites W2944081267 @default.
- W4313362722 cites W2944517541 @default.
- W4313362722 cites W2950839012 @default.
- W4313362722 cites W2952838193 @default.
- W4313362722 cites W2965207724 @default.
- W4313362722 cites W2971296787 @default.
- W4313362722 cites W2983831037 @default.
- W4313362722 cites W2998789541 @default.
- W4313362722 cites W2999929466 @default.
- W4313362722 cites W3003425036 @default.
- W4313362722 cites W3015101934 @default.
- W4313362722 cites W3016417837 @default.
- W4313362722 cites W3025590102 @default.
- W4313362722 cites W3033913479 @default.
- W4313362722 cites W3036044269 @default.
- W4313362722 cites W3036570640 @default.
- W4313362722 cites W3037101939 @default.
- W4313362722 cites W3038967043 @default.
- W4313362722 cites W3042469522 @default.
- W4313362722 cites W3043509725 @default.
- W4313362722 cites W3048802680 @default.
- W4313362722 cites W3082075010 @default.
- W4313362722 cites W3082673362 @default.
- W4313362722 cites W3087463599 @default.
- W4313362722 cites W3112527783 @default.
- W4313362722 cites W3119051313 @default.
- W4313362722 cites W3119452674 @default.
- W4313362722 cites W3129597048 @default.
- W4313362722 cites W3131601958 @default.
- W4313362722 cites W3132282445 @default.
- W4313362722 cites W3134340698 @default.
- W4313362722 cites W3135772124 @default.
- W4313362722 cites W3135880466 @default.
- W4313362722 cites W3137110642 @default.
- W4313362722 cites W3138815386 @default.
- W4313362722 cites W3153141402 @default.
- W4313362722 cites W3154247191 @default.
- W4313362722 cites W3154973962 @default.
- W4313362722 cites W3156748097 @default.
- W4313362722 cites W3175695765 @default.
- W4313362722 cites W3180474420 @default.
- W4313362722 cites W3183696665 @default.
- W4313362722 cites W3185202723 @default.
- W4313362722 cites W3185779390 @default.
- W4313362722 cites W3188510902 @default.
- W4313362722 cites W3199683118 @default.
- W4313362722 cites W3200898326 @default.
- W4313362722 cites W3202468840 @default.
- W4313362722 cites W3212050879 @default.
- W4313362722 cites W3216302197 @default.
- W4313362722 cites W4200313056 @default.
- W4313362722 cites W4200330783 @default.
- W4313362722 cites W4200416701 @default.
- W4313362722 cites W4200546115 @default.
- W4313362722 cites W4205574442 @default.
- W4313362722 cites W4207072045 @default.
- W4313362722 cites W4210398104 @default.
- W4313362722 cites W4210414979 @default.
- W4313362722 cites W4210810326 @default.
- W4313362722 cites W4210834238 @default.
- W4313362722 cites W4214562605 @default.
- W4313362722 cites W4214659916 @default.
- W4313362722 cites W4224233567 @default.
- W4313362722 cites W4226161906 @default.
- W4313362722 cites W4285083776 @default.
- W4313362722 cites W4285594649 @default.
- W4313362722 cites W4286435457 @default.
- W4313362722 cites W4289133351 @default.
- W4313362722 cites W4306916468 @default.
- W4313362722 cites W4309269047 @default.
- W4313362722 cites W4310044196 @default.
- W4313362722 cites W4312080107 @default.
- W4313362722 doi "https://doi.org/10.3390/diagnostics13010110" @default.
- W4313362722 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36611402" @default.
- W4313362722 hasPublicationYear "2022" @default.
- W4313362722 type Work @default.