Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313362956> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4313362956 endingPage "80" @default.
- W4313362956 startingPage "71" @default.
- W4313362956 abstract "Research on soft-clustering has not been explored much compared to hard-clustering. Soft-clustering algorithms are important in solving complex clustering problems. One of the soft-clustering methods is the Gaussian Mixture Model (GMM). GMM is a clustering method to classify data points into different clusters based on the Gaussian distribution. This study aims to determine the number of clusters formed by using the GMM method. The data used in this study is synthetic data on water quality indicators obtained from the Kaggle website. The stages of the GMM method are: imputing the Not Available (NA) value (if there is an NA value), checking the data distribution, conducting a normality test, and standardizing the data. The next step is to estimate the parameters with the Expectation Maximization (EM) algorithm. The best number of clusters is based on the biggest value of the Bayesian Information Creation (BIC). The results showed that the best number of clusters from synthetic data on water quality indicators was 3 clusters. Cluster 1 consisted of 1110 observations with low-quality category, cluster 2 consisted of 499 observations with medium quality category, and cluster 3 consisted of 1667 observations with high-quality category or acceptable. The results of this study recommend that the GMM method can be grouped correctly when the variables used are generally normally distributed. This method can be applied to real data, both in which the variables are normally distributed or which have a mixture of Gaussian and non-Gaussian." @default.
- W4313362956 created "2023-01-06" @default.
- W4313362956 creator A5034353873 @default.
- W4313362956 creator A5068233699 @default.
- W4313362956 creator A5071531568 @default.
- W4313362956 date "2022-11-13" @default.
- W4313362956 modified "2023-10-14" @default.
- W4313362956 title "Application of Soft-Clustering Analysis Using Expectation Maximization Algorithms on Gaussian Mixture Model" @default.
- W4313362956 doi "https://doi.org/10.30812/varian.v6i1.2142" @default.
- W4313362956 hasPublicationYear "2022" @default.
- W4313362956 type Work @default.
- W4313362956 citedByCount "0" @default.
- W4313362956 crossrefType "journal-article" @default.
- W4313362956 hasAuthorship W4313362956A5034353873 @default.
- W4313362956 hasAuthorship W4313362956A5068233699 @default.
- W4313362956 hasAuthorship W4313362956A5071531568 @default.
- W4313362956 hasBestOaLocation W43133629561 @default.
- W4313362956 hasConcept C105795698 @default.
- W4313362956 hasConcept C11413529 @default.
- W4313362956 hasConcept C121332964 @default.
- W4313362956 hasConcept C122123141 @default.
- W4313362956 hasConcept C124101348 @default.
- W4313362956 hasConcept C149872217 @default.
- W4313362956 hasConcept C153180895 @default.
- W4313362956 hasConcept C154945302 @default.
- W4313362956 hasConcept C163716315 @default.
- W4313362956 hasConcept C168136583 @default.
- W4313362956 hasConcept C182081679 @default.
- W4313362956 hasConcept C22648726 @default.
- W4313362956 hasConcept C33704608 @default.
- W4313362956 hasConcept C33923547 @default.
- W4313362956 hasConcept C41008148 @default.
- W4313362956 hasConcept C49781872 @default.
- W4313362956 hasConcept C56672385 @default.
- W4313362956 hasConcept C61224824 @default.
- W4313362956 hasConcept C62520636 @default.
- W4313362956 hasConcept C73555534 @default.
- W4313362956 hasConcept C94641424 @default.
- W4313362956 hasConceptScore W4313362956C105795698 @default.
- W4313362956 hasConceptScore W4313362956C11413529 @default.
- W4313362956 hasConceptScore W4313362956C121332964 @default.
- W4313362956 hasConceptScore W4313362956C122123141 @default.
- W4313362956 hasConceptScore W4313362956C124101348 @default.
- W4313362956 hasConceptScore W4313362956C149872217 @default.
- W4313362956 hasConceptScore W4313362956C153180895 @default.
- W4313362956 hasConceptScore W4313362956C154945302 @default.
- W4313362956 hasConceptScore W4313362956C163716315 @default.
- W4313362956 hasConceptScore W4313362956C168136583 @default.
- W4313362956 hasConceptScore W4313362956C182081679 @default.
- W4313362956 hasConceptScore W4313362956C22648726 @default.
- W4313362956 hasConceptScore W4313362956C33704608 @default.
- W4313362956 hasConceptScore W4313362956C33923547 @default.
- W4313362956 hasConceptScore W4313362956C41008148 @default.
- W4313362956 hasConceptScore W4313362956C49781872 @default.
- W4313362956 hasConceptScore W4313362956C56672385 @default.
- W4313362956 hasConceptScore W4313362956C61224824 @default.
- W4313362956 hasConceptScore W4313362956C62520636 @default.
- W4313362956 hasConceptScore W4313362956C73555534 @default.
- W4313362956 hasConceptScore W4313362956C94641424 @default.
- W4313362956 hasIssue "1" @default.
- W4313362956 hasLocation W43133629561 @default.
- W4313362956 hasLocation W43133629562 @default.
- W4313362956 hasLocation W43133629563 @default.
- W4313362956 hasLocation W43133629564 @default.
- W4313362956 hasOpenAccess W4313362956 @default.
- W4313362956 hasPrimaryLocation W43133629561 @default.
- W4313362956 hasRelatedWork W1979618116 @default.
- W4313362956 hasRelatedWork W2152451004 @default.
- W4313362956 hasRelatedWork W2152842394 @default.
- W4313362956 hasRelatedWork W2171593483 @default.
- W4313362956 hasRelatedWork W2797047863 @default.
- W4313362956 hasRelatedWork W2971855126 @default.
- W4313362956 hasRelatedWork W4200404937 @default.
- W4313362956 hasRelatedWork W4310575853 @default.
- W4313362956 hasRelatedWork W4313362956 @default.
- W4313362956 hasRelatedWork W1491908038 @default.
- W4313362956 hasVolume "6" @default.
- W4313362956 isParatext "false" @default.
- W4313362956 isRetracted "false" @default.
- W4313362956 workType "article" @default.