Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313363087> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4313363087 endingPage "18" @default.
- W4313363087 startingPage "1" @default.
- W4313363087 abstract "The foul odor of foul gas has many harmful effects on the environment and human health. In order to accurately assess this impact, it is necessary to identify specific malodorous components and levels. In order to meet the qualitative and quantitative identification of the components of malodorous gas, an electronic nose system is developed in this paper. Both principal component analysis (PCA) and linear discriminant analysis (LDA) were used to reduce the dimensionality of the collected data. The reduced-dimensional data are combined with a support vector machine (SVM) and backpropagation (BP) neural network for classification and recognition to compare the recognition results. Regarding qualitative recognition, this paper selects the method of LDA combined with the BP neural network after comparison. Experiments show that the qualitative recognition rate of this method in this study can reach 100%, and the amount of data after LDA dimensionality reduction is small, which speeds up the pattern speed of recognition. Regarding quantitative identification, this paper proposes a prediction experiment through Partial least squares (PLS) and BP neural networks. The experiment shows that the average relative error of the trained BP network is within 6%. Finally, the experiment of quantitative analysis of malodorous compound gas by this system shows that the maximum relative error of this method is only 4.238%. This system has higher accuracy and faster recognition speed than traditional methods." @default.
- W4313363087 created "2023-01-06" @default.
- W4313363087 creator A5053086655 @default.
- W4313363087 creator A5067297604 @default.
- W4313363087 creator A5077153113 @default.
- W4313363087 creator A5091341521 @default.
- W4313363087 date "2022-12-29" @default.
- W4313363087 modified "2023-09-29" @default.
- W4313363087 title "Research on electronic nose for compound malodor recognition combined with artificial neural network and linear discriminant analysis" @default.
- W4313363087 cites W1970975061 @default.
- W4313363087 cites W2039222602 @default.
- W4313363087 cites W2043692040 @default.
- W4313363087 cites W2047235983 @default.
- W4313363087 cites W2120358205 @default.
- W4313363087 cites W2197400149 @default.
- W4313363087 cites W2772931408 @default.
- W4313363087 cites W2794068363 @default.
- W4313363087 cites W2902485344 @default.
- W4313363087 cites W3022509562 @default.
- W4313363087 cites W3040383777 @default.
- W4313363087 cites W3081625936 @default.
- W4313363087 cites W3105527009 @default.
- W4313363087 cites W3163487949 @default.
- W4313363087 cites W3174188222 @default.
- W4313363087 cites W3181480972 @default.
- W4313363087 cites W3184275836 @default.
- W4313363087 cites W3184786026 @default.
- W4313363087 cites W3196574195 @default.
- W4313363087 cites W3209650615 @default.
- W4313363087 cites W3212718505 @default.
- W4313363087 cites W4206400062 @default.
- W4313363087 cites W4210475052 @default.
- W4313363087 cites W4212939107 @default.
- W4313363087 doi "https://doi.org/10.3233/jifs-222539" @default.
- W4313363087 hasPublicationYear "2022" @default.
- W4313363087 type Work @default.
- W4313363087 citedByCount "0" @default.
- W4313363087 crossrefType "journal-article" @default.
- W4313363087 hasAuthorship W4313363087A5053086655 @default.
- W4313363087 hasAuthorship W4313363087A5067297604 @default.
- W4313363087 hasAuthorship W4313363087A5077153113 @default.
- W4313363087 hasAuthorship W4313363087A5091341521 @default.
- W4313363087 hasConcept C111030470 @default.
- W4313363087 hasConcept C116834253 @default.
- W4313363087 hasConcept C12267149 @default.
- W4313363087 hasConcept C153180895 @default.
- W4313363087 hasConcept C154945302 @default.
- W4313363087 hasConcept C155032097 @default.
- W4313363087 hasConcept C23895516 @default.
- W4313363087 hasConcept C27438332 @default.
- W4313363087 hasConcept C41008148 @default.
- W4313363087 hasConcept C50644808 @default.
- W4313363087 hasConcept C59822182 @default.
- W4313363087 hasConcept C69738355 @default.
- W4313363087 hasConcept C70518039 @default.
- W4313363087 hasConcept C86803240 @default.
- W4313363087 hasConceptScore W4313363087C111030470 @default.
- W4313363087 hasConceptScore W4313363087C116834253 @default.
- W4313363087 hasConceptScore W4313363087C12267149 @default.
- W4313363087 hasConceptScore W4313363087C153180895 @default.
- W4313363087 hasConceptScore W4313363087C154945302 @default.
- W4313363087 hasConceptScore W4313363087C155032097 @default.
- W4313363087 hasConceptScore W4313363087C23895516 @default.
- W4313363087 hasConceptScore W4313363087C27438332 @default.
- W4313363087 hasConceptScore W4313363087C41008148 @default.
- W4313363087 hasConceptScore W4313363087C50644808 @default.
- W4313363087 hasConceptScore W4313363087C59822182 @default.
- W4313363087 hasConceptScore W4313363087C69738355 @default.
- W4313363087 hasConceptScore W4313363087C70518039 @default.
- W4313363087 hasConceptScore W4313363087C86803240 @default.
- W4313363087 hasLocation W43133630871 @default.
- W4313363087 hasOpenAccess W4313363087 @default.
- W4313363087 hasPrimaryLocation W43133630871 @default.
- W4313363087 hasRelatedWork W1623999640 @default.
- W4313363087 hasRelatedWork W2011753777 @default.
- W4313363087 hasRelatedWork W2111149694 @default.
- W4313363087 hasRelatedWork W2151015462 @default.
- W4313363087 hasRelatedWork W2169311637 @default.
- W4313363087 hasRelatedWork W2358824780 @default.
- W4313363087 hasRelatedWork W2380927352 @default.
- W4313363087 hasRelatedWork W2980846366 @default.
- W4313363087 hasRelatedWork W3157560838 @default.
- W4313363087 hasRelatedWork W4384695349 @default.
- W4313363087 isParatext "false" @default.
- W4313363087 isRetracted "false" @default.
- W4313363087 workType "article" @default.