Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313364027> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4313364027 endingPage "412" @default.
- W4313364027 startingPage "401" @default.
- W4313364027 abstract "Production scheduling, which directly influences the completion time and throughput of workshops, has received extensive research. However, due to the high cost of real-world production verification, most literature did not verify the optimized scheduling scheme in real-world workshops. This paper studied the verification of scheduling schemes and environments, using a discrete event simulation (DES) platform. The aim of this study is to provide an efficient way to verify the correctness of scheduling environments established by programming languages and scheduling results obtained by intelligent algorithms. The system architecture of scheduling verification based on DES is established. The modelling approach via DES is proposed by designing parametric workshop generation, flexible production control, and real-time data processing. The popular distributed permutation flowshop scheduling problem is selected as a case study, where the optimal scheduling scheme obtained by a deep reinforcement learning algorithm is fed into the production simulation model in Plant Simulation software. The experiment results show that the proposed scheduling verification approach can validate the scheduling scheme and environment effectively. The utilization and Gantt charts clearly show the performance of scheduling schemes. This work can help to verify the scheduling schemes and programmed scheduling environment efficiently without costly real-world validation." @default.
- W4313364027 created "2023-01-06" @default.
- W4313364027 creator A5008572704 @default.
- W4313364027 creator A5019763828 @default.
- W4313364027 creator A5029069927 @default.
- W4313364027 creator A5076327247 @default.
- W4313364027 date "2022-12-30" @default.
- W4313364027 modified "2023-09-26" @default.
- W4313364027 title "Verification of intelligent scheduling based on deep reinforcement learning for distributed workshops via discrete event simulation" @default.
- W4313364027 doi "https://doi.org/10.14743/apem2022.4.444" @default.
- W4313364027 hasPublicationYear "2022" @default.
- W4313364027 type Work @default.
- W4313364027 citedByCount "0" @default.
- W4313364027 crossrefType "journal-article" @default.
- W4313364027 hasAuthorship W4313364027A5008572704 @default.
- W4313364027 hasAuthorship W4313364027A5019763828 @default.
- W4313364027 hasAuthorship W4313364027A5029069927 @default.
- W4313364027 hasAuthorship W4313364027A5076327247 @default.
- W4313364027 hasBestOaLocation W43133640271 @default.
- W4313364027 hasConcept C107568181 @default.
- W4313364027 hasConcept C111919701 @default.
- W4313364027 hasConcept C112866106 @default.
- W4313364027 hasConcept C11413529 @default.
- W4313364027 hasConcept C119948110 @default.
- W4313364027 hasConcept C120314980 @default.
- W4313364027 hasConcept C122141398 @default.
- W4313364027 hasConcept C127413603 @default.
- W4313364027 hasConcept C127456818 @default.
- W4313364027 hasConcept C147203929 @default.
- W4313364027 hasConcept C158336966 @default.
- W4313364027 hasConcept C175893541 @default.
- W4313364027 hasConcept C201995342 @default.
- W4313364027 hasConcept C206729178 @default.
- W4313364027 hasConcept C21547014 @default.
- W4313364027 hasConcept C31689143 @default.
- W4313364027 hasConcept C32310161 @default.
- W4313364027 hasConcept C41008148 @default.
- W4313364027 hasConcept C44154836 @default.
- W4313364027 hasConcept C55439883 @default.
- W4313364027 hasConcept C68387754 @default.
- W4313364027 hasConcept C79403827 @default.
- W4313364027 hasConcept C95981495 @default.
- W4313364027 hasConceptScore W4313364027C107568181 @default.
- W4313364027 hasConceptScore W4313364027C111919701 @default.
- W4313364027 hasConceptScore W4313364027C112866106 @default.
- W4313364027 hasConceptScore W4313364027C11413529 @default.
- W4313364027 hasConceptScore W4313364027C119948110 @default.
- W4313364027 hasConceptScore W4313364027C120314980 @default.
- W4313364027 hasConceptScore W4313364027C122141398 @default.
- W4313364027 hasConceptScore W4313364027C127413603 @default.
- W4313364027 hasConceptScore W4313364027C127456818 @default.
- W4313364027 hasConceptScore W4313364027C147203929 @default.
- W4313364027 hasConceptScore W4313364027C158336966 @default.
- W4313364027 hasConceptScore W4313364027C175893541 @default.
- W4313364027 hasConceptScore W4313364027C201995342 @default.
- W4313364027 hasConceptScore W4313364027C206729178 @default.
- W4313364027 hasConceptScore W4313364027C21547014 @default.
- W4313364027 hasConceptScore W4313364027C31689143 @default.
- W4313364027 hasConceptScore W4313364027C32310161 @default.
- W4313364027 hasConceptScore W4313364027C41008148 @default.
- W4313364027 hasConceptScore W4313364027C44154836 @default.
- W4313364027 hasConceptScore W4313364027C55439883 @default.
- W4313364027 hasConceptScore W4313364027C68387754 @default.
- W4313364027 hasConceptScore W4313364027C79403827 @default.
- W4313364027 hasConceptScore W4313364027C95981495 @default.
- W4313364027 hasIssue "4" @default.
- W4313364027 hasLocation W43133640271 @default.
- W4313364027 hasOpenAccess W4313364027 @default.
- W4313364027 hasPrimaryLocation W43133640271 @default.
- W4313364027 hasRelatedWork W1976129816 @default.
- W4313364027 hasRelatedWork W2106332846 @default.
- W4313364027 hasRelatedWork W2167574351 @default.
- W4313364027 hasRelatedWork W2225350526 @default.
- W4313364027 hasRelatedWork W2351390697 @default.
- W4313364027 hasRelatedWork W2377713709 @default.
- W4313364027 hasRelatedWork W3134500102 @default.
- W4313364027 hasRelatedWork W4313364027 @default.
- W4313364027 hasRelatedWork W2184166483 @default.
- W4313364027 hasRelatedWork W2464565109 @default.
- W4313364027 hasVolume "17" @default.
- W4313364027 isParatext "false" @default.
- W4313364027 isRetracted "false" @default.
- W4313364027 workType "article" @default.